Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biofactors ; 43(4): 529-539, 2017 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-28247504

RESUMO

Our previous study found curcumin and vitamin E to have protective effects against benzo[a]pyrene (BaP) exposure in human normal lung epithelial BEAS-2B cells. The first objective of this study was to determine whether epigallocatechin-3-gallate (EGCG) elicited the same response. Co-treatment with 5 µM BaP and 20 µM EGCG in BEAS-2B promoted a significant reduction in cell viability and greater G2/M cell cycle arrest, induction of ROS, and reductions in BaP-induced CYP1A1/CYP1B1/COMT, EGFR, p-Akt (Ser473), p-p53 (Thr55), and survivin mRNA/protein expression, as well as an increase in p-p53 (Ser15). Based on these findings, the second objective was to extend the investigation by developing a novel BaP-transformed BEAS-2B cell line, BEAS-2BBaP , to examine the effects of EGCG when co-administered with gefitinib, an EGFR tyrosine kinase inhibitor. Cell colony formation assay demonstrated in vitro tumorigenic potential of BEAS-2BBaP , which had an overexpression of EGFR. Viability testing revealed gefitinib co-treatment with EGCG resulted in more cell death compared with gefitinib alone. Co-treated cells had greater reductions in gefitinib-induced CYP1A1/CYB1B1, EGFR, cyclin D1, p-Akt (Ser473), and survivin mRNA/protein expression, as well as an increase in p-p53 (Ser15). Therefore, EGCG was found to promote greater cytotoxicity to BEAS-2B co-treated with BaP and BEAS-2BBaP upon gefitinib co-treatment through regulating metabolism enzymes and signaling pathways involving EGFR and p53. These findings suggest that EGCG did not act as a protective compound in BEAS-2B after acute BaP exposure, but has the potential to be a useful adjuvant chemotherapeutic compound when coupled with gefitinib for chemosensitization. © 2017 BioFactors, 43(4):529-539, 2017.


Assuntos
Benzo(a)pireno/toxicidade , Catequina/análogos & derivados , Western Blotting , Catequina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Citometria de Fluxo , Gefitinibe , Humanos , Quinazolinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
2.
J Nutr Biochem ; 40: 1-13, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723473

RESUMO

Pesticides, smoke, mycotoxins, polychlorinated biphenyls (PCBs), and arsenic are the most common environmental toxins and toxicants to humans. These toxins and toxicants may impact on human health at the molecular (DNA, RNA, or protein), organelle (mitochondria, lysosome, or membranes), cellular (growth inhibition or cell death), tissue, organ, and systemic levels. Formation of reactive radicals, lipid peroxidation, inflammation, genotoxicity, hepatotoxicity, embryotoxicity, neurological alterations, apoptosis, and carcinogenic events are some of the mechanisms mediating the toxic effects of the environmental toxins and toxicants. Green tea, the nonoxidized and nonfermented form of tea that contains several polyphenols, including green tea catechins, exhibits protective effects against these environmental toxins and toxicants in preclinical studies and to a much-limited extent, in clinical trials. The protective effects are collectively mediated by antioxidant, antiinflammatory, antimutagenic, hepatoprotective and neuroprotective, and anticarcinogenic activities. In addition, green tea modulates signaling pathway including NF-κB and ERK pathways, preserves mitochondrial membrane potential, inhibits caspase-3 activity, down-regulates proapoptotic proteins, and induces the phase II detoxifying pathway. The bioavailability and metabolism of green tea and its protective effects against environmental insults induced by pesticides, smoke, mycotoxins, PCBs, and arsenic are reviewed in this paper. Future studies with emphasis on clinical trials should identify biomarkers of green tea intake, examine the mechanisms of action of green tea polyphenols, and investigate potential interactions of green tea with other toxicant-modulating dietary factors.


Assuntos
Catequina/farmacocinética , Exposição Ambiental/efeitos adversos , Micotoxinas/toxicidade , Praguicidas/toxicidade , Chá , Arsênio/toxicidade , Disponibilidade Biológica , Catequina/farmacologia , Humanos , Neoplasias/prevenção & controle , Bifenilos Policlorados/toxicidade , Chá/química
3.
Oxid Med Cell Longev ; 2015: 217304, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922640

RESUMO

Our previous studies have shown Leptomycin B (LMB) is a promising antilung cancer drug. Epigallocatechin-3-gallate (EGCG) has antitumor properties but a debatable clinical application. The objective of this study is to evaluate the combination therapeutic effect of LMB and EGCG and its molecular mechanisms in human lung cancer A549 cells. Increased cytotoxicity was observed in LMB+EGCG-treated cells compared to LMB-treated cells. Elevated ROS was maximized 2 h after treatment, and LMB+EGCG-treated cells had higher ROS levels compared to LMB. N-Acetyl-L-cysteine (NAC) studies confirmed the oxidative role of LMB and/or EGCG treatment. In comparison to the control, CYP3A4, SOD, GPX1, and p21 mRNA expression levels were increased 7.1-, 2.0-, 4.6-, and 13.1-fold in LMB-treated cells, respectively, while survivin was decreased 42.6-fold. Additionally, these increases of CYP3A4, SOD, and GPX1 were significantly reduced, while p21 was significantly increased in LMB+EGCG-treated cells compared to LMB-treated cells. The qRT-PCR results for p21 and survivin were further confirmed by Western blot. Our study first shows that LMB produces ROS and is possibly metabolized by CYP3A4, GPX1, and SOD in A549 cells, and combination treatment of LMB and EGCG augments LMB-induced cytotoxicity through enhanced ROS production and the modulation of drug metabolism and p21/survivin pathways.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Acetilcisteína/farmacologia , Catequina/farmacologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Survivina , Regulação para Cima/efeitos dos fármacos , Glutationa Peroxidase GPX1
4.
PLoS One ; 9(3): e92992, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664296

RESUMO

Benzo[a]pyrene (BaP), a well-known environmental carcinogen, promotes oxidative stress and DNA damage. Curcumin and vitamin E (VE) have potent antioxidative activity that protects cells from oxidative stress and cellular damage. The objectives of the present study were to investigate the adverse effects of BaP on normal human lung epithelial cells (BEAS-2B), the potential protective effects of curcumin and VE against BaP-induced cellular damage, and the molecular mechanisms of action. MTT assay, flow cytometry, fluorescence microplate assay, HPLC, qRT-PCR, and western blot were performed to analyze cytotoxicity, cell cycle, reactive oxygen species (ROS), BaP diol-epoxidation (BPDE)-DNA adducts, gene expression, and protein expression, respectively. Curcumin or VE prevented cells from BaP-induced cell cycle arrest and growth inhibition, significantly suppressed BaP-induced ROS levels, and decreased BPDE-DNA adducts. While CYP1A1 and 1B1 were induced by BaP, these inductions were not significantly reduced by curcumin or VE. Moreover, the level of activated p53 and PARP-1 were significantly induced by BaP, whereas this induction was markedly reduced after curcumin and VE co-treatment. Survivin was significantly down-regulated by BaP, and curcumin significantly restored survivin expression in BaP-exposed cells. The ratio of Bax/Bcl-2 was also significantly increased in cells exposed to BaP and this increase was reversed by VE co-treatment. Taken together, BaP-induced cytotoxicity occurs through DNA damage, cell cycle arrest, ROS production, modulation of metabolizing enzymes, and the expression/activation of p53, PARP-1, survivin, and Bax/Bcl-2. Curcumin and VE could reverse some of these BaP-mediated alterations and therefore be effective natural compounds against the adverse effects of BaP in lung cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Benzo(a)pireno/toxicidade , Curcumina/farmacologia , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Vitamina E/farmacologia , Linhagem Celular , Dano ao DNA , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA