RESUMO
OBJECTIVE: Advances in computer vision make it possible to combine low-cost cameras with algorithms, enabling biomechanical measures of body function and rehabilitation programs to be performed anywhere. We evaluated a computer vision system's accuracy and concurrent validity for estimating clinically relevant biomechanical measures. DESIGN: Cross-sectional study. SETTING: Laboratory. PARTICIPANTS: Thirty-one healthy participants and 31 patients with axial spondyloarthropathy. INTERVENTION: A series of clinical functional tests (including the gold standard Bath Ankylosing Spondylitis Metrology Index tests). Each test was performed twice: the first performance was recorded with a camera, and a computer vision algorithm was used to estimate variables. During the second performance, a clinician measured the same variables manually. MAIN MEASURES: Joint angles and inter-limb distances. Clinician measures were compared with computer vision estimates. RESULTS: For all tests, clinician and computer vision estimates were correlated (r2 values: 0.360-0.768). There were no significant mean differences between methods for shoulder flexion (left: 2 ± 14° (mean ± standard deviation), t = 0.99, p < 0.33; right: 3 ± 15°, t = 1.57, p < 0.12), side flexion (left: - 0.5 ± 3.1â cm, t = -1.34, p = 0.19; right: 0.5 ± 3.4â cm, t = 1.05, p = 0.30) and lumbar flexion ( - 1.1 ± 8.2â cm, t = -1.05, p = 0.30). For all other movements, significant differences were observed, but could be corrected using a systematic offset. CONCLUSION: We present a computer vision approach that estimates distances and angles from clinical movements recorded with a phone or webcam. In the future, this approach could be used to monitor functional capacity and support physical therapy management remotely.
Assuntos
Espondiloartropatias , Espondilite Anquilosante , Humanos , Voluntários Saudáveis , Estudos Transversais , Espondilite Anquilosante/tratamento farmacológico , Inteligência Artificial , Fenômenos BiomecânicosRESUMO
Measurements of muscle-tendon unit passive mechanical properties are often used to illustrate acute and chronic responses to a training stimulus. The purpose of this study was to quantify the inter-session repeatability of triceps surae passive stiffness measurements in athletic and non-athletic populations, with the view to discussing its usefulness both as a muscle-tendon profiling tool and a control measure for studies with multiple data collection sessions. The study also aimed to observe the effects of quiet standing on passive stiffness parameters. Twenty-nine men (10 cyclists, nine triathletes, 10 controls) visited the laboratory on three separate occasions, where passive stiffness tests were carried out using an isokinetic dynamometer and B-mode ultrasound. Participants were fully rested on two of the sessions and subjected to 20 min of quiet standing in the other. The passive stiffness assessment generally showed only moderate inter-session repeatability but was still able to detect inter-group differences, with triathletes showing higher passive stiffness than cyclists (p < 0.05). Furthermore, quiet standing impacted passive stiffness by causing a reduction in ankle joint range of motion, although mechanical resistance to stretch in the muscle-tendon unit at a given joint angle was relatively unaffected. These findings show that passive stiffness assessment is appropriate for detecting inter-group differences in the triceps surae and even the effects of a low-intensity task such as quiet standing, despite showing some inter-session variation. However, the inter-session variation suggests that passive stiffness testing might not be suitable as a control measure when testing participants on multiple sessions.
Assuntos
Tendão do Calcâneo , Articulação do Tornozelo , Eletromiografia , Humanos , Masculino , Músculo Esquelético , Amplitude de Movimento ArticularRESUMO
PURPOSE: Measurement of medial gastrocnemius (MG) tendon length using ultrasonography (US) requires the muscle-tendon junction (MTJ) to be located. Previously, the MG MTJ has been tracked from different proximo-distal locations near the MTJ, which could influence estimates of tendon length change due to the different characteristics of the aponeurosis and tendon. We used US to evaluate the effect of tracking point location on MG MTJ displacement during maximal and submaximal (10, 20 and 30% of the non-injured maximal) isometric plantar flexion contractions. METHODS: Displacement behaviour of MTJ was tracked from (1) the exact MTJ; and (2) from an insertion point of a muscle fascicle on the aponeurosis 1.3 ± 0.6 cm proximal to the MTJ, in both limbs of patients with unilateral Achilles tendon rupture (ATR) (n = 22, 4 females, 42 ± 9 years, 177 ± 9 cm, 79 ± 10 kg). RESULTS: In the non-injured limb, displacement (1.3 ± 0.5 cm vs. 1.1 ± 0.6 cm) and strain (6.7 ± 2.8% vs. 5.8 ± 3.3%) during maximal voluntary contraction were larger when tracking a point on the aponeurosis than when tracking the MTJ (both p < 0.001). The same was true for all contraction levels, and both limbs. CONCLUSION: Tracking a point on the aponeurosis consistently exaggerates estimates of tendon displacement, and the magnitude of this effect is contraction intensity-dependent. When quantifying displacement and strain of the Achilles tendon, the MTJ should be tracked directly, rather than tracking a surrogate point proximal to the MTJ. The latter method includes part of the aponeurosis, which due to its relative compliance, artificially increases estimates of MTJ displacement and strain.
Assuntos
Tendão do Calcâneo , Contração Isométrica , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Aponeurose , Feminino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Ultrassonografia/métodosRESUMO
The purpose of this study was investigate tendon displacement patterns in non-surgically treated patients 14 months after acute Achilles tendon rupture (ATR) and to classify patients into groups based on their Achilles tendon (AT) displacement patterns. Twenty patients were tested. Sagittal images of AT were acquired using B-mode ultrasonography during ramp contractions at a torque level corresponding to 30% of the maximal isometric plantarflexion torque of the uninjured limb. A speckle tracking algorithm was used to track proximal-distal movement of the tendon tissue at 6 antero-posterior locations. Two-way repeated measures ANOVA for peak tendon displacement was performed. K-means clustering was used to classify patients according to AT displacement patterns. The difference in peak relative displacement across locations was larger in the uninjured (1.29 ± 0.87 mm) than the injured limb (0.69 ± 0.68 mm), with a mean difference (95% CI) of 0.60 mm (0.14-1.05 mm, P < .001) between limbs. For the uninjured limb, cluster analysis formed 3 groups, while 2 groups were formed for the injured limb. The three distinct patterns of AT displacement during isometric plantarflexion in the uninjured limb may arise from subject-specific anatomical variations of AT sub-tendons, while the two patterns in the injured limb may reflect differential recovery after ATR with non-surgical treatment. Subject-specific tendon characteristics are a vital determinant of stress distribution across the tendon. Changes in stress distribution may lead to variation in the location and magnitude of peak displacement within the free AT. Quantifying internal tendon displacement patterns after ATR provides new insights into AT recovery.
Assuntos
Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiopatologia , Contração Isométrica , Ruptura/fisiopatologia , Tendão do Calcâneo/diagnóstico por imagem , Adulto , Algoritmos , Fenômenos Biomecânicos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Ruptura/diagnóstico por imagem , Ruptura/terapia , Torque , UltrassonografiaRESUMO
NEW FINDINGS: What is the central question of the study? What are the effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise? What is the main finding and its importance? In a non-fatigued state, caffeine decreased the duration of the silent period evoked by transcranial magnetic stimulation. Caffeine-induced reduction of inhibitory mechanisms in the central nervous system before exercise was associated with an increased performance. Individuals who benefit from caffeine ingestion may experience lower perception of effort during exercise and an accelerated recovery of M-wave amplitude postfatigue. This study elucidates the mechanisms of action of caffeine and demonstrates that inter-individual variability of its effects on neuromuscular function is a fruitful area for further work. ABSTRACT: Caffeine enhances exercise performance, but its mechanisms of action remain unclear. In this study, we investigated its effects on neuromuscular function in a non-fatigued state and during fatiguing exercise. Eighteen men participated in this randomized, double-blind, placebo-controlled crossover trial. Baseline measures included plantarflexion force, drop jump, squat jump, voluntary activation of triceps surae muscle, soleus muscle contractile properties, M-wave, α-motoneuron excitability (H-reflex), corticospinal excitability, short-interval intracortical inhibition, intracortical facilitation, silent period evoked by transcranial magnetic stimulation (SP) and plasma potassium and caffeine concentrations. Immediately after baseline testing, participants ingested caffeine (6 mg·kg-1 ) or placebo. After a 1-h rest, baseline measures were repeated, followed by a fatiguing stretch-shortening cycle exercise (sets of 40 bilateral rebound jumps on a sledge apparatus) until task failure. Neuromuscular testing was carried out throughout the fatigue protocol and afterwards. Caffeine enhanced drop jump height (by 4.2%) and decreased the SP (by 12.6%) in a non-fatigued state. A caffeine-related decrease in SP and short-interval intracortical inhibition before the fatiguing activity was associated with an increased time to task failure. The participants who benefitted from an improved performance on the caffeine day reported a significantly lower sense of effort during exercise and had an accelerated postexercise recovery of M-wave amplitude. Caffeine modulates inhibitory mechanisms of the CNS, recovery of M-wave amplitude and perception of effort. This study lays the groundwork for future examinations of differences in caffeine-induced neuromuscular changes between those who are deemed to benefit from caffeine ingestion and those who are not.
Assuntos
Cafeína/administração & dosagem , Exercício Físico/fisiologia , Fadiga Muscular/efeitos dos fármacos , Fármacos Neuromusculares/administração & dosagem , Adulto , Método Duplo-Cego , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Reflexo H/efeitos dos fármacos , Reflexo H/fisiologia , Humanos , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Postura/fisiologia , Estimulação Magnética Transcraniana/métodosRESUMO
We mapped structural and functional characteristics of muscle-tendon units in a population exposed to very long-term routine overloading. Twenty-eight military academy cadets (age = 21.00 ± 1.1 years; height = 176.1 ± 4.8 cm; mass = 73.8 ± 7.0 kg) exposed for over 24 months to repetitive overloading were profiled via ultrasonography with a senior subgroup of them (n = 11; age = 21.4 ± 1.0 years; height = 176.5 ± 4.8 cm; mass = 71.4 ± 6.6 kg) also tested while walking and marching on a treadmill. A group of eleven ethnicity- and age-matched civilians (age = 21.6 ± 0.7 years; height = 176.8 ± 4.3 cm; mass = 74.6 ± 5.6 kg) was also profiled and tested. Cadets and civilians exhibited similar morphology (muscle and tendon thickness and cross-sectional area, pennation angle, fascicle length) in 26 out of 29 sites including the Achilles tendon. However, patellar tendon thickness along the entire tendon was greater (P < .05) by a mean of 16% for the senior cadets compared with civilians. Dynamically, cadets showed significantly smaller ranges of fascicle length change and lower shortening velocity in medial gastrocnemius during walking (44.0% and 47.6%, P < .05-.01) and marching (27.5% and 34.3%, P < .05-.01) than civilians. Furthermore, cadets showed lower normalized soleus electrical activity during walking (22.7%, P < .05) and marching (27.0%, P < .05). Therefore, 24-36 months of continuous overloading, primarily occurring under aerobic conditions, leads to more efficient neural and mechanical behavior in the triceps surae complex, without any major macroscopic alterations in key anatomical structures.
Assuntos
Militares , Músculo Esquelético/fisiologia , Tendões/fisiologia , Caminhada , Fenômenos Biomecânicos , Humanos , Masculino , Ultrassonografia , Adulto JovemRESUMO
Proximal-distal differences in muscle activity are rarely considered when defining the activity level of hamstring muscles. The aim of this study was to determine the inter-muscular and proximal-distal electromyography (EMG) activity patterns of hamstring muscles during common hamstring exercises. Nineteen amateur athletes without a history of hamstring injury performed 9 exercises, while EMG activity was recorded along the biceps femoris long head (BFlh) and semitendinosus (ST) muscles using 15-channel high-density electromyography (HD-EMG) electrodes. EMG activity levels normalized to those of a maximal voluntary isometric contraction (%MVIC) were determined for the eccentric and concentric phase of each exercise and compared between different muscles and regions (proximal, middle, distal) within each muscle. Straight-knee bridge, upright hip extension, and leg curls exhibited the highest hamstrings activity in both the eccentric (40%-54%MVIC) and concentric phases (69%-85%MVIC). Hip extension was the only BF-dominant exercise (Cohen's d = 0.28 (eccentric) and 0.33 (concentric)). Within ST, lower distal than middle/proximal activity was found in the bent-knee bridge and leg curl exercises (d range = 0.53-1.20), which was not evident in other exercises. BFlh also displayed large regional differences across exercises (d range = 0.00-1.28). This study demonstrates that inter-muscular and proximal-distal activity patterns are exercise-dependent, and in some exercises are affected by the contraction mode. Knowledge of activity levels and relative activity of hamstring muscles in different exercises may assist exercise selection in hamstring injury management.
Assuntos
Eletromiografia , Exercício Físico/fisiologia , Músculos Isquiossurais/fisiologia , Contração Isométrica , Adulto , Atletas , Quadril , Humanos , Joelho , Masculino , Amplitude de Movimento Articular , Torque , Adulto JovemRESUMO
The compliance of elastic elements allows muscles to dissipate energy safely during eccentric contractions. This buffering function is well documented in animal models but our understanding of its mechanism in humans is confined to non-specific tasks, requiring a subsequent acceleration of the body. The present study aimed to examine the behaviour of the human triceps surae muscle-tendon unit (MTU) during a pure energy dissipation task, under two loading conditions. Thirty-nine subjects performed a single-leg landing task, with and without added mass. Ultrasound measurements were combined with three-dimensional kinematics and kinetics to determine instantaneous length changes of MTUs, muscle fascicles, Achilles tendon and combined elastic elements. Gastrocnemius and soleus MTUs lengthened during landing. After a small concentric action, fascicles contracted eccentrically during most of the task, whereas plantar flexor muscles were activated. Combined elastic elements lengthened until peak ankle moment and recoiled thereafter, whereas no recoil was observed for the Achilles tendon. Adding mass resulted in greater negative work and MTU lengthening, which were accompanied by a greater stretch of tendon and elastic elements and a greater recruitment of the soleus muscle, without any further fascicle strain. Hence, the buffering action of elastic elements delimits the maximal strain and lengthening velocity of active muscle fascicles and is commensurate with loading constraints. In the present task, energy dissipation was modulated via greater MTU excursion and more forceful eccentric contractions. The distinct strain pattern of the Achilles tendon supports the notion that different elastic elements may not systematically fulfil the same function.
Assuntos
Tendão do Calcâneo/fisiologia , Atividade Motora , Contração Muscular , Músculo Esquelético/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Cinética , Masculino , Adulto JovemRESUMO
This study examined the contributions of individual muscles to changes in energetic cost of transport (COT) over seven walking speeds, and compared results between healthy young and elderly subjects. Twenty six participants (13 young aged 18-30; 13 old aged 70-80) were recruited. COT (O2/kg body mass/km) was calculated by standardizing the mean oxygen consumption recorded during steady state walking. Electromyography signals from 10 leg muscles were used to calculate the cumulative activity required to traverse a unit of distance (CMAPD) for each muscle at each speed. In the old group CMAPD was correlated with COT, presented higher and more variable values, and showed greater increases around optimal speed for all studied muscles. Soleus CMAPD was independent of speed in the young group, but this was not evident with aging. Greater energy cost of walking in older individuals seems to be attributable to increased energy cost of all lower limb muscles.
Assuntos
Metabolismo Energético/fisiologia , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Humanos , Músculo Esquelético/metabolismo , Inquéritos e QuestionáriosRESUMO
Reducing sitting time by means of sit-stand workstations is an emerging trend, but further evidence is needed regarding their health benefits. This cross-sectional study compared work time muscle activity patterns and spinal shrinkage between office workers (aged 24-62, 58.3% female) who used either a sit-stand workstation (Sit-Stand group, n = 10) or a traditional sit workstation (Sit group, n = 14) for at least the past three months. During one typical workday, muscle inactivity and activity from quadriceps and hamstrings were monitored using electromyography shorts, and spinal shrinkage was measured using stadiometry before and after the workday. Compared with the Sit group, the Sit-Stand group had less muscle inactivity time (66.2 ± 17.1% vs. 80.9 ± 6.4%, p = 0.014) and more light muscle activity time (26.1 ± 12.3% vs. 14.9 ± 6.3%, p = 0.019) with no significant difference in spinal shrinkage (5.62 ± 2.75 mm vs. 6.11 ± 2.44 mm). This study provides evidence that working with sit-stand workstations can promote more light muscle activity time and less inactivity without negative effects on spinal shrinkage. Practitioner Summary: This cross-sectional study compared the effects of using a sit-stand workstation to a sit workstation on muscle activity patterns and spinal shrinkage in office workers. It provides evidence that working with a sit-stand workstation can promote more light muscle activity time and less inactivity without negative effects on spinal shrinkage.
Assuntos
Músculos/fisiologia , Postura/fisiologia , Coluna Vertebral/fisiopatologia , Adulto , Computadores , Estudos Transversais , Eletromiografia , Feminino , Finlândia , Inquéritos Epidemiológicos , Humanos , Masculino , Pessoa de Meia-Idade , Comportamento Sedentário , Local de Trabalho , Adulto JovemRESUMO
INTRODUCTION: The short latency stretch reflex (SLR) is well described, but the stimulus that evokes the SLR remains elusive. One hypothesis states that reflex size is proportional to muscle fiber stretch, so in this study we examined the relationship between these 2 parameters in human triceps surae muscles. METHODS: Achilles tendon taps and dorsiflexion stretches with different amplitudes and preactivation torques were applied to 6 participants while electromyography and muscle fascicle length changes were recorded in soleus and medial gastrocnemius (MG). RESULTS: In response to tendon taps, neither fascicle length nor velocity changes were correlated with SLR size in either muscle, but accelerometer peaks were observed immediately after hammer-tendon contact. Similar results were obtained after dorsiflexion stretches. CONCLUSION: Muscle fascicle stretch is poorly correlated with SLR size, regardless of perturbation parameters. We attribute the SLR trigger to the transmission of vibration through the lower limb, rather than muscle fiber stretch.
Assuntos
Braço/fisiologia , Músculo Esquelético/fisiologia , Reflexo de Estiramento/fisiologia , Tendões/fisiologia , Adulto , Eletromiografia/métodos , Feminino , Reflexo H/fisiologia , Humanos , Masculino , Exercícios de Alongamento Muscular/métodosRESUMO
BACKGROUND: a fall occurs when an individual experiences a loss of balance from which they are unable to recover. Assessment of balance recovery ability in older adults may therefore help to identify individuals at risk of falls. The purpose of this 12-month prospective study was to assess whether the ability to recover from a forward loss of balance with a single step across a range of lean magnitudes was predictive of falls. METHODS: two hundred and one community-dwelling older adults, aged 65-90 years, underwent baseline testing of sensori-motor function and balance recovery ability followed by 12-month prospective falls evaluation. Balance recovery ability was defined by whether participants required either single or multiple steps to recover from forward loss of balance from three lean magnitudes, as well as the maximum lean magnitude participants could recover from with a single step. RESULTS: forty-four (22%) participants experienced one or more falls during the follow-up period. Maximal recoverable lean magnitude and use of multiple steps to recover at the 15% body weight (BW) and 25%BW lean magnitudes significantly predicted a future fall (odds ratios 1.08-1.26). The Physiological Profile Assessment, an established tool that assesses variety of sensori-motor aspects of falls risk, was also predictive of falls (Odds ratios 1.22 and 1.27, respectively), whereas age, sex, postural sway and timed up and go were not predictive. CONCLUSION: reactive stepping behaviour in response to forward loss of balance and physiological profile assessment are independent predictors of a future fall in community-dwelling older adults. Exercise interventions designed to improve reactive stepping behaviour may protect against future falls.
Assuntos
Acidentes por Quedas/prevenção & controle , Marcha , Vida Independente , Equilíbrio Postural , Transtornos de Sensação/complicações , Adaptação Fisiológica , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Feminino , Humanos , Modelos Logísticos , Masculino , Razão de Chances , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Transtornos de Sensação/diagnóstico , Transtornos de Sensação/fisiopatologia , Fatores de TempoRESUMO
Oxygen consumption ([Formula: see text]) is an important measure for exercise test, such as walking and running, that can be measured outdoors using portable spirometers or metabolic analyzers. However, these devices are not feasible for regular use by consumers as they intervene with the user's physical integrity, and are expensive and difficult to operate. To circumvent these drawbacks, indirect estimation of [Formula: see text] using neural networks combined with motion features and heart rate measurements collected with consumer-grade sensors has been shown to yield reasonably accurate [Formula: see text] for intra-subject estimation. However, estimating [Formula: see text] with neural networks trained with data from other individuals than the user, known as inter-subject estimation, remains an open problem. In this paper, five types of neural network architectures were tested in various configurations for inter-subject [Formula: see text] estimation. To analyse predictive performance, data from 16 participants walking and running at speeds between 1.0 m/s and 3.3 m/s were used. The most promising approach was Xception network, which yielded average estimation errors as low as 2.43 ml×min-1×kg-1, suggesting that it could be used by athletes and running enthusiasts for monitoring their oxygen consumption over time to detect changes in their movement economy.
Assuntos
Marcha , Redes Neurais de Computação , Consumo de Oxigênio , Corrida , Caminhada , Humanos , Consumo de Oxigênio/fisiologia , Masculino , Adulto , Marcha/fisiologia , Corrida/fisiologia , Caminhada/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Adulto JovemRESUMO
OBJECTIVE: B-mode ultrasound can be used to image musculoskeletal tissues, but one major bottleneck is analyses of muscle architectural parameters (i.e., muscle thickness, pennation angle and fascicle length), which are most often performed manually. METHODS: In this study we trained two different neural networks (classic U-Net and U-Net with VGG16 pre-trained encoder) to detect muscle fascicles and aponeuroses using a set of labeled musculoskeletal ultrasound images. We determined the best-performing model based on intersection over union and loss metrics. We then compared neural network predictions on an unseen test set with those obtained via manual analysis and two existing semi/automated analysis approaches (simple muscle architecture analysis [SMA] and UltraTrack). DL_Track_US detects the locations of the superficial and deep aponeuroses, as well as multiple fascicle fragments per image. RESULTS: For single images, DL_Track_US yielded results similar to those produced by a non-trainable automated method (SMA; mean difference in fascicle length: 5.1 mm) and human manual analysis (mean difference: -2.4 mm). Between-method differences in pennation angle were within 1.5°, and mean differences in muscle thickness were less than 1 mm. Similarly, for videos, there was overlap between the results produced with UltraTrack and DL_Track_US, with intraclass correlations ranging between 0.19 and 0.88. CONCLUSION: DL_Track_US is fully automated and open source and can estimate fascicle length, pennation angle and muscle thickness from single images or videos, as well as from multiple superficial muscles. We also provide a user interface and all necessary code and training data for custom model development.
Assuntos
Músculo Esquelético , Humanos , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia/métodosRESUMO
This study investigated age-related differences in dynamic balance control and its connection to reflexes and explosive isometric plantar flexor torque in 19 males (9 Young aged 20-33 yr, 10 Elderly aged 61-72 yr). Dynamic balance was measured during Slow (15 cm/s) and Fast (25 cm/s) anterior and posterior perturbations. H/M-ratio was measured at 20% of maximal M-wave (H/M20%) 10, 30, and 90 ms after perturbations. Stretch reflexes were measured from tibialis anterior and soleus during anterior and posterior perturbations, respectively. In Slow, Elderly exhibited larger peak center-of-pressure (COP) displacement (15%; P < 0.05) during anterior perturbations. In Fast, Young showed a trend for faster recovery (37%; P = 0.086) after anterior perturbations. M-wave latency was similar between groups (6.2 ± 0.7 vs. 6.9 ± 1.2 ms), whereas Elderly showed a longer H-reflex latency (33.7 ± 2.3 vs. 36.4 ± 1.7 ms; P < 0.01). H/M20% was higher in Young 30 ms after Fast anterior (50%; P < 0.05) and posterior (51%; P < 0.05) perturbations. Plantar flexor rapid torque was also higher in Young (26%; P < 0.05). After combining both groups' data, H/M20% correlated negatively with Slow peak COP displacement (r = -0.510, P < 0.05) and positively with Fast recovery time (r = 0.580, P < 0.05) for anterior perturbations. Age-related differences in balance control seem to be more evident in anterior than posterior perturbations, and rapid sensory feedback is generally important for balance perturbation recovery.
Assuntos
Músculo Esquelético/fisiologia , Equilíbrio Postural , Tempo de Reação , Reflexo , Adulto , Fatores Etários , Idoso , Humanos , Masculino , Contração Muscular , Músculo Esquelético/inervaçãoRESUMO
The functional roles of individual lower limb muscles during human walking may differ depending on walking speed or duration. In this study, 11 volunteers walked on a treadmill for 60 min at speeds corresponding to both optimal and 20% above optimal energetic cost of transport whilst oxygen consumption and medial gastrocnemius (MG) and soleus fascicle lengths were measured. Although energetic cost of transport was â¼12% higher at the faster speed, it remained constant over 60 min at both speeds, suggesting that humans can walk for prolonged periods at a range of speeds without compromising energetic efficiency. The fascicles of both muscles exhibited rather 'isometric' behaviour during the early to mid stance phase of walking, which appears to be independent of walking speed or movement efficiency. However, several functional differences were observed between muscles. MG exhibited time- and speed-dependent decreases in operating length, and shortened faster during the pushoff phase at the faster walking speed. Conversely, soleus exhibited consistent contractile behaviour regardless of walking speed or duration, and always shortened slower than MG during pushoff. Soleus appears to play a more important functional role than MG during walking. This may be especially true when walking for prolonged periods or at speeds above the most energetically efficient, where the force potential and thus the functional importance of MG appears to decline.
Assuntos
Marcha , Contração Muscular , Músculo Esquelético/fisiologia , Caminhada , Adulto , Teste de Esforço , Feminino , Humanos , Masculino , Movimento , Consumo de Oxigênio , Fatores de Tempo , Adulto JovemRESUMO
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.
Assuntos
Envelhecimento , Contração Muscular , Cálcio , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Tendões , Envelhecimento/fisiologia , Humanos , Modelos BiológicosRESUMO
Achilles tendon (AT) rupture leads to long-term structural and functional impairments. Currently, the predictors of good recovery after rupture are poorly known. Thus, we aimed to explore the interconnections between structural, mechanical, and neuromuscular parameters and their associations with factors that could explain good recovery in patients with non-surgically treated AT rupture. A total of 35 patients with unilateral rupture (6 females) participated in this study. Muscle-tendon structural, mechanical, and neuromuscular parameters were measured 1-year after rupture. Interconnections between the inter-limb differences (Δ) were explored using partial correlations, followed by multivariable linear regression to find associations between the measured factors and the following markers that indicate good recovery: 1) tendon length, 2) tendon non-uniform displacement, and 3) flexor hallucis longus (FHL) normalized EMG amplitude difference between limbs. Δmedial gastrocnemius (MG) (ß = -0.12, p = 0.007) and Δlateral gastrocnemius (ß = -0.086, p = 0.030) subtendon lengths were associated with MG tendon Δstiffness. MG (ß = 11.56, p = 0.003) and soleus (ß = 2.18, p = 0.040) Δsubtendon lengths explained 48 % of variance in FHL EMG amplitude. Regression models for tendon length and non-uniform displacement were not significant. Smaller inter-limb differences in Achilles subtendon lengths were associated with smaller differences in the AT stiffness between limbs, and a smaller contribution of FHL muscle to the plantarflexion torque. In the injured limb, the increased contribution of FHL appears to partially counteract a smaller contribution from MG due to the elongated tendon, however the role of FHL should not be emphasized during rehabilitation to allow recovery of the TS muscles.
Assuntos
Tendão do Calcâneo , Traumatismos do Tornozelo , Traumatismos dos Tendões , Feminino , Humanos , Fenômenos Biomecânicos , Músculo Esquelético , Pé , RupturaRESUMO
BACKGROUND: To better understand muscle remodelling in dynamic conditions after an Achilles tendon rupture, this study examined the length of medial gastrocnemius muscle fascicles during a heel-rise at 6- and 12-months after non-operative ATR treatment. METHODS: Participants (15 M, 3F) were diagnosed with acute Achilles tendon rupture. Medial gastrocnemius subtendon length, fascicle length and pennation angle were assessed in resting conditions, and fascicle shortening during bi- and unilateral heel-rises. FINDINGS: Fascicle shortening was smaller on the injured side (mean difference [95% CI]: -9.7 mm [-14.7 to -4.7 mm]; -11.1 mm [-16.5 to -5.8 mm]) and increased from 6- to 12 months (4.5 mm [2.8-6.3 mm]; 3.2 mm [1.4-4.9 mm]) in bi- and unilateral heel-rise, respectively. The injured tendon was longer compared to contralateral limb (2.16 cm [0.54-3.79 cm]) and the length decreased over time (-0.78 cm [-1.28 to -0.29 cm]). Tendon length correlated with fascicle shortening in bilateral (r = -0.671, p = 0.002; r = -0.666, p = 0.003) and unilateral (r = -0.773, p ≤ 0.001; r = -0.616, p = 0.006) heel-rise, at 6- and 12-months, respectively. In the injured limb, the change over time in fascicle shortening correlated with change in subtendon length in unilateral heel-rise (r = 0.544, p = 0.02). INTERPRETATION: This study showed that the lengths of the injured tendon and associated muscle can adapt throughout the first year after rupture when patients continue physiotherapy and physical exercises. For muscle, measures of resting length may not be very informative about adaptations, which manifest themselves during functional tasks such as unilateral heel-rise.