RESUMO
Crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) were used to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity, indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). These results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. The potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed.
Assuntos
Biocatálise , Liases Intramoleculares/genética , Modelos Biológicos , Mutação/genética , Alanina/genética , Mentha spicata/enzimologia , Modelos Moleculares , Mutagênese/genética , Proteínas Mutantes/metabolismo , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismoRESUMO
With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization and shows remarkable efficacy in cancer chemotherapy. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia) is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene, which is catalysed by taxadiene synthase. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82 Å resolution) and 2-fluorogeranylgeranyl diphosphate (2.25 Å resolution). The TXS structure reveals a modular assembly of three α-helical domains. The carboxy-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third 'insertion' domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.
Assuntos
Evolução Molecular , Isomerases/química , Isomerases/metabolismo , Taxus/enzimologia , Terpenos/metabolismo , Alcenos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Diterpenos/química , Diterpenos/metabolismo , Isomerases/classificação , Modelos Moleculares , Organofosfatos/química , Organofosfatos/metabolismo , Paclitaxel/biossíntese , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Dobramento de ProteínaRESUMO
Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost.
Assuntos
Mentha piperita/química , Óleos de Plantas/isolamento & purificação , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Sequência de Bases , Biomarcadores/análise , Cicloexenos/análise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Primers do DNA/genética , Genes de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Limoneno , Mentha piperita/genética , Mentha piperita/metabolismo , Engenharia Metabólica/métodos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Óleos de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Terpenos/análiseRESUMO
The biosynthesis of the anti-cancer drug taxol (paclitaxel) has required the collaborative efforts of several research groups to tackle the synthesis and labeling of putative biosynthetic intermediates, in concert with the identification, cloning and functional expression of the biosynthetic genes responsible for the construction of this complex natural product. Based on a combination of precursor labeling and incorporation experiments, and metabolite isolation from Taxus spp., a picture of the complex matrix of pathway oxygenation reactions following formation of the first committed intermediate, taxa-4(5),11(12)-diene, is beginning to emerge. An overview of the current state of knowledge on the early-stages of taxol biosynthesis is presented.
Assuntos
Antineoplásicos Fitogênicos , Produtos Biológicos , Paclitaxel , Taxus/química , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/química , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Estrutura Molecular , Paclitaxel/biossíntese , Paclitaxel/química , Paclitaxel/metabolismoRESUMO
Biosynthesis of the p-menthane monoterpenes in peppermint occurs in the secretory cells of the peltate glandular trichomes and results in the accumulation of primarily menthone and menthol. cDNAs and recombinant enzymes are well characterized for eight of the nine enzymatic steps leading from the 5-carbon precursors to menthol, and subcellular localization of several key enzymes suggests a complex network of substrate and product movement is required during oil biosynthesis. In addition, studies concerning the regulation of oil biosynthesis have demonstrated a temporal partition of the pathway into an early, biosynthetic program that results in the accumulation of menthone and a later, oil maturation program that leads to menthone reduction and concomitant menthol accumulation. The menthone reductase responsible for the ultimate pathway reduction step, menthone-menthol reductase (MMR), has been characterized and found to share significant sequence similarity with its counterpart reductase, a menthone-neomenthol reductase, which catalyzes a minor enzymatic reaction associated with oil maturation. Further, the menthone reductases share significant sequence similarity with the temporally separate and mechanistically different isopiperitenone reductase (IPR). Here we present immunocytochemical localizations for these reductases using a polyclonal antibody raised against menthone-menthol reductase. The polyclonal antibody used for this study showed little specificity between these three reductases, but by using it for immunostaining of tissues of different ages we were able to provisionally separate staining of an early biosynthetic enzyme, IPR, found in young, immature leaves from that of the oil maturation enzyme, MMR, found in older, mature leaves. Both reductases were localized to the cytoplasm and nucleoplasm of the secretory cells of peltate glandular trichomes, and were absent from all other cell types examined.
Assuntos
Ácido Graxo Sintases/metabolismo , Mentha piperita/enzimologia , Mentol/metabolismo , Família Multigênica , NADH NADPH Oxirredutases/metabolismo , Sequência de Aminoácidos , Especificidade de Anticorpos/imunologia , Vias Biossintéticas , Western Blotting , Ácido Graxo Sintases/química , Imuno-Histoquímica , Mentha piperita/ultraestrutura , Mentol/química , Modelos Biológicos , Dados de Sequência Molecular , NADH NADPH Oxirredutases/química , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/ultraestrutura , Transporte Proteico , Alinhamento de SequênciaRESUMO
The integration of mathematical modeling and experimental testing is emerging as a powerful approach for improving our understanding of the regulation of metabolic pathways. In this study, we report on the development of a kinetic mathematical model that accurately simulates the developmental patterns of monoterpenoid essential oil accumulation in peppermint (Mentha x piperita). This model was then used to evaluate the biochemical processes underlying experimentally determined changes in the monoterpene pathway under low ambient-light intensities, which led to an accumulation of the branchpoint intermediate (+)-pulegone and the side product (+)-menthofuran. Our simulations indicated that the environmentally regulated changes in monoterpene profiles could only be explained when, in addition to effects on biosynthetic enzyme activities, as yet unidentified inhibitory effects of (+)-menthofuran on the branchpoint enzyme pulegone reductase (PR) were assumed. Subsequent in vitro analyses with recombinant protein confirmed that (+)-menthofuran acts as a weak competitive inhibitor of PR (K(i) = 300 muM). To evaluate whether the intracellular concentration of (+)-menthofuran was high enough for PR inhibition in vivo, we isolated essential oil-synthesizing secretory cells from peppermint leaves and subjected them to steam distillations. When peppermint plants were grown under low-light conditions, (+)-menthofuran was selectively retained in secretory cells and accumulated to very high levels (up to 20 mM), whereas under regular growth conditions, (+)-menthofuran levels remained very low (<400 muM). These results illustrate the utility of iterative cycles of mathematical modeling and experimental testing to elucidate the mechanisms controlling flux through metabolic pathways.
Assuntos
Vias Biossintéticas/fisiologia , Mentha piperita/química , Modelos Teóricos , Monoterpenos/metabolismo , Óleos de Plantas/química , Biologia de Sistemas/métodos , Simulação por Computador , Monoterpenos Cicloexânicos , Cinética , Estrutura Molecular , Monoterpenos/análise , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismoRESUMO
A series of potential taxoid substrates was prepared in radiolabelled form to probe in vitro for the oxirane formation step and subsequent ring expansion step to the oxetane (ring D) presumably involved in the biosynthesis of the anticancer agent Taxol. None of the taxoid test substrates underwent transformation in cell-free systems from Taxus suggesting that these surrogates bore substitution patterns inappropriate for recognition or catalysis by the target enzymes, or that taxoid oxiranes and oxetanes arise by independent biosynthetic pathways.
RESUMO
Two cDNAs encoding taxoid-O-acetyl transferases (TAX 9 and TAX 14) were obtained from a previously isolated family of Taxus acyl/aroyl transferase cDNA clones. The recombinant enzymes catalyze the acetylation of taxadien-5alpha,13alpha-diacetoxy-9alpha,10beta-diol to generate taxadien-5alpha,10beta,13alpha-tri-acetoxy-9alpha-ol and taxadien-5alpha,9alpha,13alpha-triacetoxy-10beta-ol, respectively, both of which then serve as substrates for a final acetylation step to yield taxusin, a prominent side-route metabolite of Taxus. Neither enzyme acetylate the 5alpha- or the 13alpha-hydroxyls of taxoid polyols, indicating that prior acylations is required for efficient peracetylation to taxusin. Both enzymes were kinetically characterized, and the regioselectivity of acetylation was shown to vary with pH. Sequence comparison with other taxoid acyl transferases confirmed that primary structure of this enzyme type reveals little about function in taxoid metabolism. Unlike previously identified acetyl transferases involved in Taxol production, these two enzymes appear to act exclusively on partially acetylated taxoid polyols to divert the Taxol pathway to side-route metabolites.
Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Paclitaxel/biossíntese , Taxus/enzimologia , Acetil-CoA C-Acetiltransferase/análise , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/genética , Sequência de Aminoácidos , Clonagem Molecular , Dados de Sequência MolecularRESUMO
The last few steps in the biosynthesis of the anticancer drug Taxol in yew (Taxus) species are thought to involve the attachment of beta-phenylalanine to the C13-O-position of the advanced taxane diterpenoid intermediate baccatin III to yield N-debenzoyl-2'-deoxytaxol, followed by hydroxylation on the side chain at the C2'-position to afford N-debenzoyltaxol, and finally N-benzoylation to complete the pathway. A cDNA encoding the N-benzoyl transferase that catalyzes the terminal step of the reaction sequence was previously isolated from a family of transferase clones (derived from an induced Taxus cell cDNA library) by functional characterization of the corresponding recombinant enzyme using the available surrogate substrate N-debenzoyl-2'-deoxytaxol [K. Walker, R. Long, R. Croteau, Proc. Nat. Acad. Sci. USA 99 (2002) 9166-9171]. Semi-synthetic N-debenzoyltaxol was prepared by coupling of 7-triethylsilybaccatin III and (2R,3S)-beta-phenylisoserine protected as the N-Boc N,O-isopropylidene derivative by means of carbodiimide activation and formic acid deprotections. The selectivity of the recombinant N-transferase for N-debenzoyltaxol was evaluated, and the enzyme was shown to prefer, by a catalytic efficiency factor of two, N-debenzoyltaxol over N-debenzoyl-2'-deoxytaxol as the taxoid co-substrate in the benzoyl transfer reaction, consistent with the assembly sequence involving 2'-hydroxylation prior to N-benzoylation. Selectivity for the acyl/aroyl-CoA co-substrate was also examined, and the enzyme was shown to prefer benzoyl-CoA. Transfer from tigloyl-CoA to N-debenzoyltaxol to afford cephalomannine (Taxol B) was not observed, nor was transfer observed from hexanoyl-CoA or butanoyl-CoA to yield Taxol C or Taxol D, respectively. These results support the proposed sequence of reactions for C13-O-side chain assembly in Taxol biosynthesis, and suggest that other N-transferases are responsible for the formation of related, late pathway, N-acylated taxoids.
Assuntos
Paclitaxel/química , Taxus/enzimologia , Transferases/química , Ativação Enzimática , Especificidade por SubstratoRESUMO
The putative taxol biosynthesis metabolites, taxa-4(20),11(12)-diene-5α, 13α -diol (7), taxa-4(20),11(12)-diene-5α, 9α, 13α-triol (9), and taxa-4(20),11(12)-diene-5α, 10ß, 13α-triol (10), have been prepared by Barton deoxygenation of the C-9 and C10-hydroxyl groups of protected derivatives of taxusin, a major taxoid metabolite isolated from Yew heart wood. The synthetic protocol devised, is amenable for the preparation of isotopically labeled congeners that will be useful to probe further intermediate steps in the biosynthesis of taxol.
RESUMO
Taxa-4(20),11(12)-diene-5α-acetate 5 and Taxa-4(20), 11(12)-diene-5α-acetate, 10ß-ol 6, have been identified as early stage intermediates involved in the biosynthesis of Taxol® (paclitaxel). Tritium-labeled 5 and 6 were successfully prepared by Barton deoxygenation using tri-n-butyltintritiide of the C-14-hydroxyl group of a taxoid obtained from Japanese Yew.
RESUMO
The tightly coupled nature of the reaction sequence catalyzed by monoterpene synthases has prevented direct observation of the topologically required isomerization step leading from geranyl diphosphate to the enzyme-bound, tertiary allylic intermediate linalyl diphosphate, which then cyclizes to the various monoterpene skeletons. X-ray crystal structures of these enzymes complexed with suitable analogues of the substrate and intermediate could provide a clearer view of this universal, but cryptic, step of monoterpenoid cyclase catalysis. Toward this end, the functionally inert analogues 2-fluorogeranyl diphosphate, (+/-)-2-fluorolinalyl diphosphate, and (3R)- and (3S)-homolinalyl diphosphates (2,6-dimethyl-2-vinyl-5-heptenyl diphosphates) were prepared, and compared to the previously described substrate analogue 3-azageranyl diphosphate (3-aza-2,3-dihydrogeranyl diphosphate) as inhibitors and potential crystallization aids with two representative monoterpenoid cyclases, (-)-limonene synthase and (+)-bornyl diphosphate synthase. Although these enantioselective synthases readily distinguished between (3R)- and (3S)-homolinalyl diphosphates, both of which were more effective inhibitors than was 3-azageranyl diphosphate, the fluorinated analogues proved to be the most potent competitive inhibitors and have recently yielded informative liganded structures with limonene synthase.
Assuntos
Difosfatos/química , Diterpenos/química , Liases Intramoleculares/antagonistas & inibidores , Monoterpenos/química , Fosfatos de Poli-Isoprenil/química , Monoterpenos Acíclicos , Ativação Enzimática , Inibidores Enzimáticos/química , Estabilidade EnzimáticaRESUMO
Administering Taxus suspension cells with labeled 5alpha-hydroxytaxadiene and 5alpha,10beta-dihydroxytaxadiene, and the corresponding 5alpha-acetate esters, demonstrated that acetylation at C5 of the monool precursor promotes the formation of 14beta-hydroxy taxoids, such as taxuyunnanine C, at the expense of 13alpha-hydroxy taxoids, including Taxol and its congeners, but that the major bifurcation in taxoid biosynthesis, toward 13alpha- or 14beta-hydroxy taxoids, occurs after 10beta-hydroxylation of the taxane core.
Assuntos
Taxoides/metabolismo , Taxus/metabolismo , Células Cultivadas , Taxus/citologiaRESUMO
The genus Mentha encompasses mint species cultivated for their essential oils, which are formulated into a vast array of consumer products. Desirable oil characteristics and resistance to the fungal disease Verticillium wilt are top priorities for the mint industry. However, cultivated mints have complex polyploid genomes and are sterile. Breeding efforts, therefore, require the development of genomic resources for fertile mint species. Here, we present draft de novo genome and plastome assemblies for a wilt-resistant South African accession of Mentha longifolia (L.) Huds., a diploid species ancestral to cultivated peppermint and spearmint. The 353 Mb genome contains 35 597 predicted protein-coding genes, including 292 disease resistance gene homologs, and nine genes determining essential oil characteristics. A genetic linkage map ordered 1397 genome scaffolds on 12 pseudochromosomes. More than two million simple sequence repeats were identified, which will facilitate molecular marker development. The M. longifolia genome is a valuable resource for both metabolic engineering and molecular breeding. This is exemplified by employing the genome sequence to clone and functionally characterize the promoters in a peppermint cultivar, and demonstrating the utility of a glandular trichome-specific promoter to increase expression of a biosynthetic gene, thereby modulating essential oil composition.
Assuntos
Genoma de Planta , Mentha/genética , Sequência de Bases , Melhoramento Vegetal , Doenças das Plantas/genética , Regiões Promotoras GenéticasRESUMO
Cytochrome P450 monooxygenases play a prominent role in the biosynthesis of the diterpenoid anticancer drug Taxol, as they appear to constitute about half of the 19 enzymatic steps of the pathway in yew (Taxus) species. A combination of classical biochemical and molecular methods, including cell-free enzyme studies and differential-display of mRNA-reverse transcription polymerase chain reaction (RT-PCR) combined with a homology-based searching and random sequencing of a cDNA library from induced T. cuspidata cells, led to the discovery of six novel cytochrome P450 taxoid (taxane diterpenoid) hydroxylases. These genes show unusually high sequence similarity with each other (>70%) but low similarity (<30%) to, and significant evolutionary distance from, other plant P450s. Despite their high similarity, functional analysis of these hydroxylases demonstrated distinctive substrate specificities responsible for an early bifurcation in the biosynthetic pathway after the initial hydroxylation of the taxane core at C5, leading into a biosynthetic network of competing, but interconnected, branches. The use of surrogate substrates, in cases where the predicted taxoid precursors were not available, led to the discovery of two core oxygenases, the 2α- and the 7ß-hydroxylase. This general approach could accelerate the functional analysis of candidate cDNAs from the extant family of P450 genes to identify the remaining oxygenation steps of this complex pathway.
RESUMO
Biosynthesis of the anticancer drug Taxol in Taxus (yew) species involves 19 steps from the universal diterpenoid progenitor geranylgeranyl diphosphate derived by the plastidial methyl erythritol phosphate pathway for isoprenoid precursor supply. Following the committed cyclization to the taxane skeleton, eight cytochrome P450-mediated oxygenations, three CoA-dependent acyl/aroyl transfers, an oxidation at C9, and oxetane (D-ring) formation yield the intermediate baccatin III, to which the functionally important C13-side chain is appended in five additional steps. To gain further insight about Taxol biosynthesis relevant to the improved production of this drug, and to draw inferences about the organization, regulation, and origins of this complex natural product pathway, Taxus suspension cells (induced for taxoid biosynthesis by methyl jasmonate) were used for feeding studies, as the foundation for cell-free enzymology and as the source of transcripts for cDNA library construction and a variety of cloning strategies. This approach has led to the elucidation of early and late pathway segments, the isolation and characterization of over half of the pathway enzymes and their corresponding genes, and the identification of candidate cDNAs for the remaining pathway steps, and it has provided many promising targets for genetically engineering more efficient biosynthetic production of Taxol and its precursors.
RESUMO
Monoterpenes, the C(10) isoprenoids, are a large family of natural products that are best known as constituents of the essential oils and defensive oleoresins of aromatic plants. In addition to ecological roles in pollinator attraction, allelopathy and plant defense, monoterpenes are used extensively in the food, cosmetic and pharmaceutical industries. The importance of these plant products has prompted the definition of many monoterpene biosynthetic pathways, the cloning of the relevant genes and the development of genetic transformation techniques for agronomically significant monoterpene-producing plants. Metabolic engineering of monoterpene biosynthesis in the model plant peppermint has resulted in yield increase and compositional improvement of the essential oil, and also provided strategies for manipulating flavor and fragrance production, and plant defense.
Assuntos
Hemiterpenos , Plantas/genética , Plantas/metabolismo , Terpenos/metabolismo , Genes de Plantas/genética , Estrutura Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Plantas Geneticamente Modificadas , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Terpenos/química , Transgenes/genéticaRESUMO
Biosynthesis of the anticancer drug Taxol in yew species involves eight cytochrome P450-mediated oxygenations and four coenzyme A-dependent acylations of the diterpenoid core. A family of cytochrome P450 genes, obtained from a yew cell cDNA library, were functionally expressed and screened with taxusin (taxa-4(20),11(12)-dien-5 alpha,9 alpha,10 beta,13 alpha-tetraol tetraacetate) as a surrogate substrate. One clone converted this substrate to an oxygenated derivative that was identified as 7 beta-hydroxytaxusin. The structure and properties of this 7 beta-hydroxylase are similar to those of other taxoid hydroxylases. Kinetic and binding assays indicated selectivity of the 7 beta-hydroxylase for polyoxygenated and acylated taxoid substrates, an observation consistent with the operation of this enzyme in the central portion of the Taxol biosynthetic pathway. Although the 7 beta-hydroxyl of Taxol is not essential for antimitotic activity, this functional group provides a convenient means for preparing taxoid derivatives.
Assuntos
Antineoplásicos Fitogênicos/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Paclitaxel/biossíntese , Antineoplásicos Fitogênicos/química , Sequência de Bases , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Paclitaxel/química , Alinhamento de SequênciaRESUMO
The first oxygenation step in the biosynthesis of the anticancer drug taxol in Taxus species is the cytochrome p450-mediated hydroxylation (with double bond migration) of the diterpene olefin precursor taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5alpha-ol. A homology-based cloning strategy, employing an induced Taxus cell library, yielded a cDNA encoding taxadiene 5alpha-hydroxylase, which was functionally expressed in yeast and insect cells. The recombinant enzyme was characterized and shown to efficiently utilize both taxa-4(5),11(12)-diene and taxa-4(20),11(12)-diene (as an adventitious substrate) to synthesize taxa-4(20),11(12)-dien-5alpha-ol. This hydroxylase resembles, in sequence and properties, other cytochrome p450 oxygenases of taxol biosynthesis. The utilization of both taxadiene isomers in the formation of taxa-4(20),11(12)-dien-5alpha-ol is novel, suggesting a reaction mechanism involving promiscuous radical abstraction with selective oxygen insertion rather than epoxidation of the C4,C5-alkene of the natural substrate and allylic rearrangement of the resulting taxa-11(12)-en-4,5epoxide.
Assuntos
Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Oxigenases de Função Mista/metabolismo , Paclitaxel/metabolismo , Sequência de Aminoácidos , Catálise , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Isomerases/metabolismo , Cinética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Oxirredução , Oxigenases/metabolismo , Paclitaxel/química , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Taxoides/metabolismo , Taxus/enzimologiaRESUMO
Development and testing of Spektraris-NMR, an online spectral resource, is reported for the NMR-based structural identification of plant natural products (PNPs). Spektraris-NMR allows users to search with multiple spectra at once and returns a table with a list of hits arranged according to the goodness of fit between query data and database entries. For each hit, a link to a tabulated alignment of (1)H NMR and (13)C NMR spectroscopic peaks (query versus database entry) is provided. Furthermore, full spectroscopic records and experimental meta information about each database entry can be accessed online. To test the utility of Spektraris-NMR for PNP identification, the database was populated with NMR data (total of 466 spectra) for â¼ 250 taxanes, which are structurally complex diterpenoids (including the anticancer drug taxol) commonly found in the genus Taxus. NMR data generated with metabolites purified from Taxus cell suspension cultures were then used to search Spektraris-NMR, and enabled the identification of eight taxanes with high confidence. A ninth isolated metabolite could be assigned, based on spectral searches, to a taxane skeletal class, but no high confidence hit was produced. Using various spectroscopic methods, this metabolite was characterized as 2-deacetylbaccatin IV, a novel taxane. These results indicate that Spektraris-NMR is a valuable resource for rapid and reliable identification of known metabolites and has the potential to contribute to de-replication efforts in novel PNP discovery.