Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Arch Microbiol ; 205(2): 73, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705763

RESUMO

Over the last decades, losses of bee populations have been observed worldwide. A panoply of biotic and abiotic factors, as well as the interplay among them, has been suggested to be responsible for bee declines, but definitive causes have not yet been identified. Among pollinators, the honeybee Apis mellifera is threatened by various diseases and environmental stresses, which have been shown to impact the insect gut microbiota that is known to be fundamental for host metabolism, development and immunity. Aimed at preserving the gut homeostasis, many researches are currently focusing on improving the honeybee health through the administration of probiotics e.g., by boosting the innate immune response against microbial infections. Here, we review the knowledge available on the characterization of the microbial diversity associated to honeybees and the use of probiotic symbionts as a promising approach to maintain honeybee fitness, sustaining a healthy gut microbiota and enhancing its crucial relationship with the host immune system.


Assuntos
Microbioma Gastrointestinal , Probióticos , Abelhas , Animais , Probióticos/uso terapêutico , Imunidade Inata , Gerenciamento Clínico
2.
Appl Environ Microbiol ; 88(9): e0252221, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35416683

RESUMO

This study shows that Escherichia coli can be temporarily enriched in zooplankton under natural conditions and that these bacteria can belong to different phylogroups and sequence types (STs), including environmental, clinical, and animal isolates. We isolated 10 E. coli strains and sequenced the genomes of two of them. Phylogenetically, the two isolates were closer to strains isolated from poultry meat than to freshwater E. coli, albeit their genomes were smaller than those of the poultry isolates. After isolation and fluorescent protein tagging of strains ED1 and ED157, we show that Daphnia sp. can take up these strains and release them alive again, thus becoming a temporary host for E. coli. In a chemostat experiment, we show that this association does not prolong bacterial long-term survival, but at low abundances it also does not significantly reduce bacterial numbers. We demonstrate that E. coli does not belong to the core microbiota of Daphnia, suffers from competition by the natural Daphnia microbiota, but can profit from its carapax to survive in water. All in all, this study suggests that the association of E. coli with Daphnia is only temporary, but the cells are viable therein, and this might allow encounters with other bacteria for genetic exchange and potential genomic adaptation to the freshwater environment. IMPORTANCE The contamination of freshwater with feces-derived bacteria is a major concern regarding drinking water acquisition and recreational activities. Ecological interactions promoting their persistence are still very scarcely studied. This study, which analyses the survival of E. coli in the presence of zooplankton, is thus of ecological and water safety relevance.


Assuntos
Água Potável , Escherichia coli , Animais , Bactérias , Daphnia/microbiologia , Escherichia coli/genética , Fezes/microbiologia , Água Doce/microbiologia , Zooplâncton/microbiologia
3.
Environ Microbiol ; 21(11): 4343-4359, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31502415

RESUMO

Popillia japonica Newman (Coleoptera: Scarabaeidae) is a highly polyphagous invasive beetle originating from Japan. This insect is highly resilient and able to rapidly adapt to new vegetation. Insect-associated microorganisms can play important roles in insect physiology, helping their hosts to adapt to changing conditions and potentially contributing to an insect's invasive potential. Such symbiotic bacteria can be part of a core microbiota that is stably transmitted throughout the host's life cycle or selectively recruited from the environment at each developmental stage. The aim of this study was to investigate the origin, stability and turnover of the bacterial communities associated with an invasive population of P. japonica from Italy. Our results demonstrate that soil microbes represent an important source of gut bacteria for P. japonica larvae, but as the insect develops, its gut microbiota richness and diversity decreased substantially, paralleled by changes in community composition. Notably, only 16.75% of the soil bacteria present in larvae are maintained until the adult stage. We further identified the micro-environments of different gut sections as an important factor shaping microbiota composition in this species, likely due to differences in pH, oxygen availability and redox potential. In addition, P. japonica also harboured a stable bacterial community across all developmental stages, consisting of taxa well known for the degradation of plant material, namely the families Ruminococcacae, Christensenellaceae and Lachnospiraceae. Interestingly, the family Christensenallaceae had so far been observed exclusively in humans. However, the Christensenellaceae operational taxonomic units found in P. japonica belong to different taxonomic clades within this family.


Assuntos
Besouros/crescimento & desenvolvimento , Besouros/microbiologia , Microbioma Gastrointestinal , Estágios do Ciclo de Vida , Animais , Bactérias/classificação , Feminino , Masculino
4.
J Basic Microbiol ; 58(10): 827-835, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30019339

RESUMO

Androctonus australis is one of the most ubiquitous and common scorpion species in desert and arid lands from North Africa to India and it has an important ecological role and social impact. The bacterial community associated to this arachnid is unknown and we aimed to dissect its species composition in the gut, gonads, and venom gland. A 16S rRNA gene culture-independent diversity analysis revealed, among six other taxonomic groups (Firmicutes, Betaproteobacteria, Gammaproteobacteria, Flavobacteria, Actinobacteria, and Cyanobacteria), a dominance of Mollicutes phylotypes recorded both in the digestive tract and the gonads. These related Mollicutes include two Spiroplasma phylotypes (12.5% of DGGE bands and 15% of clones), and a new Mycoplasma cluster (80% of clones) showing 16S rRNA sequence identities of 95 and 93% with Mollicutes detected in the Mexican scorpions Centruroides limpidus and Vaejovis smithi, respectively. Such scorpion-associated Mollicutes form a new lineage that share a distant ancestor with Mycoplasma hominis. The observed host specificity with the apparent phylogenetic divergence suggests a relatively long co-evolution of these symbionts with the scorpion hosts. From the ecological point of view, such association may play a beneficial role for the host fitness, especially during dormancy or molt periods.


Assuntos
Variação Genética , Filogenia , Escorpiões/microbiologia , Simbiose , Tenericutes/classificação , Tenericutes/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , DNA Bacteriano/genética , Especificidade de Hospedeiro , Índia , México , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tenericutes/genética
5.
Front Microbiol ; 15: 1436122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113842

RESUMO

Introduction: Constructed wetlands (CWs) are nature-based solutions for wastewater treatment where the root system microbiome plays a key role in terms of nutrient and pollutant removal. Nonetheless, little is known on plant-microbe interactions and bacterial population selection in CWs, which are mostly characterized in terms of engineering aspects. Methods: Here, cultivation-independent and cultivation-based analyses were applied to study the bacterial communities associated to the root systems of Phragmites australis and Typha domingensis co-occurring in the same cell of a CW receiving primary treated wastewaters. Results and discussion: Two endophytic bacteria collections (n = 156) were established aiming to find novel strains for microbial-assisted phytodepuration, however basing on their taxonomy the possible use of these strains was limited by their low degrading potential and/or for risks related to the One-Health concept. A sharp differentiation arose between the P. australis and T. domingensis collections, mainly represented by lactic acid bacteria (98%) and Enterobacteriaceae (69%), respectively. Hence, 16S rRNA amplicon sequencing was used to disentangle the microbiome composition in the root system fractions collected at increasing distance from the root surface. Both the fraction type and the plant species were recognized as drivers of the bacterial community structure. Moreover, differential abundance analysis revealed that, in all fractions, several bacteria families were significantly and differentially enriched in P. australis or in T. domingensis. CWs have been also reported as interesting options for the removal of emerging contaminants (e.g, antibiotic resistance genes, ARGs). In this study, ARGs were mostly present in the rhizosphere of both plant species, compared to the other analyzed fractions. Notably, qPCR data showed that ARGs (i.e., ermB, bla TEM, tetA) and intl1 gene (integrase gene of the class 1 integrons) were significantly higher in Phragmites than Typha rhizospheres, suggesting that macrophyte species growing in CWs can display a different ability to remove ARGs from wastewater. Overall, the results suggest the importance to consider the plant-microbiome interactions, besides engineering aspects, to select the most suitable species when designing phytodepuration systems.

6.
J Hazard Mater ; 475: 134885, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876022

RESUMO

Aquatic ecosystems are crucial in the antimicrobial resistance cycle. While intracellular DNA has been extensively studied to understand human activity's impact on antimicrobial resistance gene (ARG) dissemination, extracellular DNA is frequently overlooked. This study examines the effect of anthropogenic water pollution on microbial community diversity, the resistome, and ARG dissemination. We analyzed intracellular and extracellular DNA from wastewater treatment plant effluents and lake surface water by shotgun sequencing. We also conducted experiments to evaluate anthropogenic pollution's effect on transforming extracellular DNA (using Gfp-plasmids carrying ARGs) within a natural microbial community. Chemical analysis showed treated wastewater had higher anthropogenic pollution-related parameters than lake water. The richness of microbial community, antimicrobial resistome, and high-risk ARGs was greater in treated wastewaters than in lake waters both for intracellular and extracellular DNA. Except for the high-risk ARGs, richness was significantly higher in intracellular than in extracellular DNA. Several ARGs were associated with mobile genetic elements and located on plasmids. Furthermore, Gfp-plasmid transformation within a natural microbial community was enhanced by anthropogenic pollution levels. Our findings underscore anthropogenic pollution's pivotal role in shaping microbial communities and their antimicrobial resistome. Additionally, it may facilitate ARG dissemination through extracellular DNA plasmid uptake.


Assuntos
Águas Residuárias , Águas Residuárias/microbiologia , Resistência Microbiana a Medicamentos/genética , Lagos/microbiologia , Genes Bacterianos/efeitos dos fármacos , Poluição da Água , Microbiologia da Água , Microbiota/efeitos dos fármacos , Antibacterianos/farmacologia , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação
7.
J Bacteriol ; 194(10): 2752-3, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22535935

RESUMO

Members of the genus Blastococcus have been isolated from sandstone monuments, as well as from sea, soil, plant, and snow samples. We report here the genome sequence of a member of this genus, Blastococcus saxobsidens strain DD2, isolated from below the surface of a Sardinian wall calcarenite stone sample.


Assuntos
Actinobacteria/genética , Genoma Bacteriano , Actinobacteria/classificação , Dados de Sequência Molecular
9.
Mol Biol Evol ; 28(12): 3285-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21690562

RESUMO

The initiation of the intracellular symbiosis that would give rise to mitochondria and eukaryotes was a major event in the history of life on earth. Hypotheses to explain eukaryogenesis fall into two broad and competing categories: those proposing that the host was a phagocytotic proto-eukaryote that preyed upon the free-living mitochondrial ancestor (hereafter FMA), and those proposing that the host was an archaebacterium that engaged in syntrophy with the FMA. Of key importance to these hypotheses are whether the FMA was motile or nonmotile, and the atmospheric conditions under which the FMA thrived. Reconstructions of the FMA based on genome content of Rickettsiales representatives-generally considered to be the closest living relatives of mitochondria-indicate that it was nonmotile and aerobic. We have sequenced the genome of Candidatus Midichloria mitochondrii, a novel and phylogenetically divergent member of the Rickettsiales. We found that it possesses unique gene sets found in no other Rickettsiales, including 26 genes associated with flagellar assembly, and a cbb(3)-type cytochrome oxidase. Phylogenomic analyses show that these genes were inherited in a vertical fashion from an ancestral α-proteobacterium, and indicate that the FMA possessed a flagellum, and could undergo oxidative phosphorylation under both aerobic and microoxic conditions. These results indicate that the FMA played a more active and potentially parasitic role in eukaryogenesis than currently appreciated and provide an explanation for how the symbiosis could have evolved under low levels of oxygen.


Assuntos
Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Flagelos/genética , Mitocôndrias/genética , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Rickettsieae/genética , Simbiose , Sequência de Bases , Células Eucarióticas , Evolução Molecular , Genoma Bacteriano , Fosforilação Oxidativa , Filogenia , Análise de Sequência de DNA , Simbiose/genética
10.
BMC Microbiol ; 12 Suppl 1: S4, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22376056

RESUMO

BACKGROUND: Bacteria of the genus Asaia have been recently recognized as secondary symbionts of different sugar-feeding insects, including the leafhopper Scaphoideus titanus, vector of Flavescence dorée phytoplasmas. Asaia has been shown to be localized in S. titanus gut, salivary glands and gonoducts and to be maternally transmitted to the progeny by an egg smearing mechanism. It is currently not known whether Asaia in S. titanus is transmitted by additional routes. We performed a study to evaluate if Asaia infection is capable of horizontal transmission via co-feeding and venereal routes. RESULTS: A Gfp-tagged strain of Asaia was provided to S. titanus individuals to trace the transmission pathways of the symbiotic bacterium. Co-feeding trials showed a regular transfer of bacterial cells from donors to recipients, with a peak of frequency after 72 hours of exposure, and with concentrations of the administrated strain growing over time. Venereal transmission experiments were first carried out using infected males paired with uninfected females. In this case, female individuals acquired Gfp-labelled Asaia, with highest infection rates 72-96 hours after mating and with increasing abundance of the tagged symbiont over time. When crosses between infected females and uninfected males were conducted, the occurrence of "female to male" transmission was observed, even though the transfer occurred unevenly. CONCLUSIONS: The data presented demonstrate that the acetic acid bacterial symbiont Asaia is horizontally transmitted among S. titanus individuals both by co-feeding and venereal transmission, providing one of the few direct demonstrations of such a symbiotic transfer in Hemiptera. This study contributes to the understanding of the bacterial ecology in the insect host, and indicates that Asaia evolved multiple pathways for the colonization of S. titanus body.


Assuntos
Acetobacteraceae/isolamento & purificação , Hemípteros/microbiologia , Acetobacteraceae/classificação , Acetobacteraceae/fisiologia , Animais , Feminino , Microbiologia de Alimentos , Genitália/microbiologia , Hemípteros/fisiologia , Masculino , Simbiose
11.
BMC Microbiol ; 12 Suppl 1: S2, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22375964

RESUMO

BACKGROUND: In recent years, acetic acid bacteria have been shown to be frequently associated with insects, but knowledge on their biological role in the arthropod host is limited. The discovery that acetic acid bacteria of the genus Asaia are a main component of the microbiota of Anopheles stephensi makes this mosquito a useful model for studies on this novel group of symbionts. Here we present experimental results that provide a first evidence for a beneficial role of Asaia in An. stephensi. RESULTS: Larvae of An. stephensi at different stages were treated with rifampicin, an antibiotic effective on wild-type Asaia spp., and the effects on the larval development were evaluated. Larvae treated with the antibiotic showed a delay in the development and an asynchrony in the appearance of later instars. In larvae treated with rifampicin, but supplemented with a rifampicin-resistant mutant strain of Asaia, larval development was comparable to that of control larvae not exposed to the antibiotic. Analysis of the bacterial diversity of the three mosquito populations confirmed that the level of Asaia was strongly decreased in the antibiotic-treated larvae, since the symbiont was not detectable by PCR-DGGE (denaturing gradient gel electrophoresis), while Asaia was consistently found in insects supplemented with rifampicin plus the antibiotic-resistant mutant in the diet, and in those not exposed to the antibiotic. CONCLUSIONS: The results here reported indicate that Asaia symbionts play a beneficial role in the normal development of An. stephensi larvae.


Assuntos
Anopheles/crescimento & desenvolvimento , Antibacterianos/farmacologia , Rifampina/farmacologia , Acetobacteraceae/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Anopheles/microbiologia , Farmacorresistência Bacteriana , Larva/efeitos dos fármacos , Simbiose/efeitos dos fármacos
12.
Microorganisms ; 10(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36557733

RESUMO

Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.

13.
Antibiotics (Basel) ; 11(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36140010

RESUMO

Antibiotic resistance spread must be considered in a holistic framework which comprises the agri-food ecosystems, where plants can be considered a bridge connecting water and soil habitats with the human microbiome. However, the study of horizontal gene transfer events within the plant microbiome is still overlooked. Here, the environmental strain Acinetobacter baylyi BD413 was used to study the acquisition of extracellular DNA (exDNA) carrying an antibiotic resistance gene (ARG) on lettuce phylloplane, performing experiments at conditions (i.e., plasmid quantities) mimicking those that can be found in a water reuse scenario. Moreover, we assessed how the presence of a surfactant, a co-formulant widely used in agriculture, affected exDNA entry in bacteria and plant tissues, besides the penetration and survival of bacteria into the leaf endosphere. Natural transformation frequency in planta was comparable to that occurring under optimal conditions (i.e., temperature, nutrient provision, and absence of microbial competitors), representing an entrance pathway of ARGs into an epiphytic bacterium able to penetrate the endosphere of a leafy vegetable. The presence of the surfactant determined a higher presence of culturable transformant cells in the leaf tissues but did not significantly increase exDNA entry in A. baylyi BD413 cells and lettuce leaves. More research on HGT (Horizontal Gene Transfer) mechanisms in planta should be performed to obtain experimental data on produce safety in terms of antibiotic resistance.

14.
AMB Express ; 12(1): 98, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895126

RESUMO

Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.

15.
Microbiol Spectr ; 10(1): e0158021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985334

RESUMO

Stress-associated dysbiosis of microbiome can have several configurations that, under an energy landscape conceptual framework, can change from one configuration to another due to different alternating selective forces. It has been proposed-according to the Anna Karenina Principle-that in stressed individuals the microbiome are more dispersed (i.e., with a higher within-beta diversity), evidencing the grade of dispersion as indicator of microbiome dysbiosis. We hypothesize that although dysbiosis leads to different microbial communities in terms of beta diversity, these are not necessarily differently dispersed (within-beta diversity), but they form disrupted networks that make them less resilient to stress. To test our hypothesis, we select nutrient restriction (NR) stress that impairs host fitness but does not introduce overt microbiome selectors, such as toxic compounds and pathogens. We fed the polyphagous black soldier fly, Hermetia illucens, with two NR diets and a control full-nutrient (FN) diet. NR diets were dysbiotic because they strongly affected insect growth and development, inducing significant microscale changes in physiochemical conditions of the gut compartments. NR diets established new configurations of the gut microbiome compared to FN-fed guts but with similar dispersion. However, these new configurations driven by the deterministic changes induced by NR diets were reflected in rarefied, less structured, and less connected bacterial interactomes. These results suggested that while the dispersion cannot be considered a consistent indicator of the unhealthy state of dysbiotic microbiomes, the capacity of the community members to maintain network connections and stability can be an indicator of the microbial dysbiotic conditions and their incapacity to sustain the holobiont resilience and host homeostasis. IMPORTANCE Changes in diet play a role in reshaping the gut microbiome in animals, inducing dysbiotic configurations of the associated microbiome. Although studies have reported on the effects of specific nutrient contents on the diet, studies regarding the conditions altering the microbiome configurations and networking in response to diet changes are limited. Our results showed that nutrient poor diets determine dysbiotic states of the host with reduction of insect weight and size, and increase of the times for developmental stage. Moreover, the poor nutrient diets lead to changes in the compositional diversity and network interaction properties of the gut microbial communities. Our study adds a new component to the understanding of the ecological processes associated with dysbiosis, by disentangling consequences of diets on microbiome dysbiosis that is manifested with the disruption of microbiome networking properties rather than changes in microbiome dispersion and beta diversity.


Assuntos
Ração Animal/análise , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Nutrientes/metabolismo , Simuliidae/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Nutrientes/análise , Simuliidae/crescimento & desenvolvimento , Simuliidae/metabolismo
16.
Environ Microbiol ; 13(2): 414-26, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21040355

RESUMO

'Candidatus Liberibacter spp.' cause serious plant diseases. 'Candidatus Liberibacter asiaticus', 'Ca. L. americanus' and 'Ca. L. africanus' are the aetiological agents of citrus greening (Huanglongbing) in Asia, America and Africa. 'Candidatus Liberibacter solanacearum' causes diseases in Solanaceae in America and New Zealand. All four species are vectored by psyllid insects of different genera. Here, we show that the pear psyllid pest Cacopsylla pyri (L.) hosts a novel liberibacter species that we named 'Ca. Liberibacter europaeus'. It can bloom to high titres in the psyllid host, with more than 10(9) 16S rRNA gene copies per individual. Fluorescent in situ hybridization experiments showed that 'Ca. L. europaeus' is present in the host midgut lumen, salivary glands and Malpighian tubules. 'Candidatus L. europaeus' has a relatively high prevalence (> 51%) in C. pyri from different areas in the Piedmont and Valle d'Aosta regions in Italy and can be transmitted to pear plants in experimental transmission trials. However, even though high titres of the bacterium (more than 10(8) 16S rRNA gene copies g(-1) of pear plant tissue) could be detected, in the pear tissues no specific disease symptoms could be observed in the infected plants over a 6-month period. Despite liberibacters representing potential quarantine organisms, 'Ca. L. europaeus', first described in Italy and Europe, apparently behaves as an endophyte rather than a pathogen.


Assuntos
Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/classificação , Animais , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Pyrus/microbiologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/crescimento & desenvolvimento , Análise de Sequência de DNA
17.
Environ Microbiol ; 13(4): 911-21, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21208355

RESUMO

While symbiosis between bacteria and insects has been thoroughly investigated in the last two decades, investments on the study of yeasts associated with insects have been limited. Insect-associated yeasts are placed on different branches of the phylogenetic tree of fungi, indicating that these associations evolved independently on several occasions. Isolation of yeasts is frequently reported from insect habitats, and in some cases yeasts have been detected in the insect gut and in other organs/tissues. Here we show that the yeast Wickerhamomyces anomalus, previously known as Pichia anomala, is stably associated with the mosquito Anopheles stephensi, a main vector of malaria in Asia. Wickerhamomyces anomalus colonized pre-adult stages (larvae L(1)-L(4) and pupae) and adults of different sex and age and could be isolated in pure culture. By a combination of transmission electron microscopy and fluorescent in situ hybridization techniques, W. anomalus was shown to localize in the midgut and in both the male and female reproductive systems, suggesting multiple transmission patterns.


Assuntos
Anopheles/microbiologia , Sistema Digestório/microbiologia , Genitália Feminina/microbiologia , Genitália Masculina/microbiologia , Pichia/crescimento & desenvolvimento , Animais , Ásia , DNA Fúngico/genética , Feminino , Hibridização in Situ Fluorescente , Larva/microbiologia , Masculino , Microscopia Eletrônica de Transmissão , Pichia/genética , Pichia/isolamento & purificação , Reação em Cadeia da Polimerase , Simbiose
18.
Appl Environ Microbiol ; 77(4): 1423-35, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21183640

RESUMO

One emerging disease of grapevine in Europe is Bois noir (BN), a phytoplasmosis caused by "Candidatus Phytoplasma solani" and spread in vineyards by the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). Here we present the first full characterization of the bacterial community of this important disease vector collected from BN-contaminated areas in Piedmont, Italy. Length heterogeneity PCR and denaturing gradient gel electrophoresis analysis targeting the 16S rRNA gene revealed the presence of a number of bacteria stably associated with the insect vector. In particular, symbiotic bacteria detected by PCR with high infection rates in adult individuals fell within the "Candidatus Sulcia muelleri" cluster in the Bacteroidetes and in the "Candidatus Purcelliella pentastirinorum" group in the Gammaproteobacteria, both previously identified in different leafhoppers and planthoppers. A high infection rate (81%) was also shown for another symbiont belonging to the Betaproteobacteria, designated the HO1-V symbiont. Because of the low level of 16S rRNA gene identity (80%) with the closest relative, an uncharacterized symbiont of the tick Haemaphysalis longicornis, we propose the new name "Candidatus Vidania fulgoroideae." Other bacterial endosymbionts identified in H. obsoletus were related to the intracellular bacteria Wolbachia pipientis, Rickettsia sp., and "Candidatus Cardinium hertigii." Fluorescent in situ hybridization coupled with confocal laser scanning microscopy and transmission electron microscopy showed that these bacteria are localized in the gut, testicles, and oocytes. As "Ca. Sulcia" is usually reported in association with other symbiotic bacteria, we propose that in H. obsoletus, it may occur in a bipartite or even tripartite relationship between "Ca. Sulcia" and "Ca. Purcelliella," "Ca. Vidania," or both.


Assuntos
Hemípteros/microbiologia , Insetos Vetores/microbiologia , Phytoplasma/patogenicidade , Doenças das Plantas/microbiologia , Simbiose , Vitis/microbiologia , Animais , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Sequência de Bases , Betaproteobacteria/classificação , Betaproteobacteria/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Hibridização in Situ Fluorescente , Itália , Consórcios Microbianos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Rickettsia/classificação , Rickettsia/isolamento & purificação , Análise de Sequência de DNA
19.
Antonie Van Leeuwenhoek ; 99(1): 43-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21113816

RESUMO

The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by interfering with the obligatory life cycle stages within the insect through the use of effector molecules. This approach, defined as 'paratransgenesis', has opened the way for the investigation and characterization of microbes residing in the mosquito body, particularly those localised within the gut. Some interesting bacteria have been identified as candidates for genetic modification, however, endosymbiotic yeasts remain largely unexplored with little information on the symbiotic relationships to date. Here we review the recent report of symbiotic relationship between Wickerhamomyces anomalus (Pichia anomala) and several mosquito vector species as promising methods to implement control of mosquito-borne diseases.


Assuntos
Culicidae/microbiologia , Controle de Mosquitos/métodos , Saccharomycetales/fisiologia , Simbiose , Animais , Saccharomycetales/isolamento & purificação
20.
Materials (Basel) ; 14(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279292

RESUMO

The increasing demand for reconstructions of concrete structures and the wide availability on the market of surface protective products and systems could lead to misunderstandings in the decision of the most effective solution. Surface protectors have become increasingly widespread in recent years in concrete restoration interventions thanks to their properties: they are able to protect the substrate from aggressive agents and consequently extend the useful life of the structures. The aim of this article is first of all to present the surface protective treatments available on the market, outlining their strengths and weaknesses. Subsequently, a characterization of seven different commercial coatings for reinforced-concrete structures is provided, taking into account chemical nature, fields of use and effectiveness, both in terms of physic and elastic performance and resistance to aggressive agents that undermine the durability of the treated concrete elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA