Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(35): 15539-15550, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39169712

RESUMO

Oil and natural gas (O&G) production and processing activities have changed markedly across the U.S. over the past several years. However, the impacts of these changes on air pollution and greenhouse gas emissions are not clear. In this study, we examine U.S. ethane (C2H6) emissions, which are primarily from O&G activities, during years 2015-2020. We use C2H6 observations made by the NOAA Global Monitoring Laboratory and partner organizations from towers and aircraft and estimate emissions from these observations by using an inverse model. We find that U.S. C2H6 emissions (4.43 ± 0.2 Tg·yr-1) are approximately three times those estimated by the EPA's 2017 National Emissions Inventory (NEI) platform (1.54 Tg·yr-1) and exhibit a very different seasonal cycle. We also find that changes in U.S. C2H6 emissions are decoupled from reported changes in production; emissions increased 6.3 ± 7.6% (0.25 ± 0.31 Tg) between 2015 and 2020 while reported C2H6 production increased by a much larger amount (78%). Our results also suggest an apparent correlation between C2H6 emissions and C2H6 spot prices, where prices could be a proxy for pressure on the infrastructure across the supply chain. Overall, these results provide insight into how U.S. C2H6 emissions are changing over time.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Etano , Poluentes Atmosféricos/análise , Etano/análise , Atmosfera/química , Estados Unidos , Gás Natural
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380737

RESUMO

In the Arctic and Boreal region (ABR) where warming is especially pronounced, the increase of gross primary production (GPP) has been suggested as an important driver for the increase of the atmospheric CO2 seasonal cycle amplitude (SCA). However, the role of GPP relative to changes in ecosystem respiration (ER) remains unclear, largely due to our inability to quantify these gross fluxes on regional scales. Here, we use atmospheric carbonyl sulfide (COS) measurements to provide observation-based estimates of GPP over the North American ABR. Our annual GPP estimate is 3.6 (2.4 to 5.5) PgC · y-1 between 2009 and 2013, the uncertainty of which is smaller than the range of GPP estimated from terrestrial ecosystem models (1.5 to 9.8 PgC · y-1). Our COS-derived monthly GPP shows significant correlations in space and time with satellite-based GPP proxies, solar-induced chlorophyll fluorescence, and near-infrared reflectance of vegetation. Furthermore, the derived monthly GPP displays two different linear relationships with soil temperature in spring versus autumn, whereas the relationship between monthly ER and soil temperature is best described by a single quadratic relationship throughout the year. In spring to midsummer, when GPP is most strongly correlated with soil temperature, our results suggest the warming-induced increases of GPP likely exceeded the increases of ER over the past four decades. In autumn, however, increases of ER were likely greater than GPP due to light limitations on GPP, thereby enhancing autumn net carbon emissions. Both effects have likely contributed to the atmospheric CO2 SCA amplification observed in the ABR.

3.
Sci Data ; 9(1): 723, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434022

RESUMO

Despite the key role of the Arctic in the global Earth system, year-round in-situ atmospheric composition observations within the Arctic are sparse and mostly rely on measurements at ground-based coastal stations. Measurements of a suite of in-situ trace gases were performed in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. These observations give a comprehensive picture of year-round near-surface atmospheric abundances of key greenhouse and trace gases, i.e., carbon dioxide, methane, nitrous oxide, ozone, carbon monoxide, dimethylsulfide, sulfur dioxide, elemental mercury, and selected volatile organic compounds (VOCs). Redundancy in certain measurements supported continuity and permitted cross-evaluation and validation of the data. This paper gives an overview of the trace gas measurements conducted during MOSAiC and highlights the high quality of the monitoring activities. In addition, in the case of redundant measurements, merged datasets are provided and recommended for further use by the scientific community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA