Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Glia ; 66(5): 999-1015, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29392777

RESUMO

Malignant glioma is one of the deadliest types of cancer. Understanding how the cell of origin progressively evolves toward malignancy in greater detail could provide mechanistic insights and lead to novel concepts for tumor prevention and therapy. Previously we have identified oligodendrocyte precursor cell (OPC) as the cell of origin for glioma following the concurrent deletion of p53 and NF1 using a mouse genetic mosaic system that can reveal mutant cells prior to malignancy. In the current study, we set out to deconstruct the gliomagenic process in two aspects. First, we determined how the individual loss of p53 or NF1 contributes to aberrant behaviors of OPCs. Second, we determined how signaling aberrations in OPCs progressively change from pre-malignant to transformed stages. We found that while the deletion of NF1 leads to mutant OPC expansion through increased proliferation and decreased differentiation, the deletion of p53 impairs OPC senescence. Signaling analysis showed that, while PI3K and MEK pathways go through stepwise over-activation, mTOR signaling remains at the basal level in pre-transforming mutant OPCs but is abruptly up-regulated in tumor OPCs. Finally, inhibiting mTOR via pharmacological or genetic methods, led to a significant blockade of gliomagenesis but had little impact on pre-transforming mutant OPCs, suggesting that mTOR is necessary for final transformation but not early progression. In summary, our findings show that deconstructing the tumorigenic process reveals specific aberrations caused by individual gene mutations and altered signaling events at precise timing during tumor progression, which may shed light on tumor-prevention strategies.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Neurofibromina 1/deficiência , Proteína Supressora de Tumor p53/deficiência , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Glioma/patologia , Células HEK293 , Humanos , Camundongos Transgênicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurofibromina 1/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
2.
Carcinogenesis ; 36 Suppl 1: S2-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106139

RESUMO

As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.


Assuntos
Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos
3.
J Cell Physiol ; 230(9): 2281-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25704960

RESUMO

We determined whether the multi-kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/ß were over-expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/ß recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK-1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re-expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by 'rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti-tumor therapy for solid tumor patients.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/biossíntese , Neoplasias/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Inibidores da Fosfodiesterase 5/administração & dosagem , Piperazinas/administração & dosagem , Sulfonamidas/administração & dosagem , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Sinergismo Farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Proteínas de Neoplasias/biossíntese , Neoplasias/genética , Neoplasias/patologia , Niacinamida/administração & dosagem , Purinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Citrato de Sildenafila , Sorafenibe , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Cell Physiol ; 230(5): 1115-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25303541

RESUMO

The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias/patologia , Inibidores da Fosfodiesterase 5/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Autofagia/efeitos dos fármacos , Celecoxib , Linhagem Celular Tumoral , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos Nus , Piperazinas , Purinas , Transdução de Sinais/efeitos dos fármacos , Citrato de Sildenafila
5.
Mol Pharmacol ; 85(3): 408-19, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24353313

RESUMO

The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with clinically relevant chemotherapies to kill gastrointestinal/genitourinary cancer cells. In bladder cancer cells, regardless of H-RAS mutational status, at clinically achievable doses, PDE5 inhibitors interacted in a greater than additive fashion with doxorubicin/mitomycin C/gemcitabine/cisplatin/paclitaxel to cause cell death. In pancreatic tumor cells expressing mutant active K-RAS, PDE5 inhibitors interacted in a greater than additive fashion with doxorubicin/gemcitabine/paclitaxel to cause cell death. The most potent PDE5 inhibitor was sildenafil. Knock down of PDE5 expression recapitulated the combination effects of PDE5 inhibitor drugs with chemotherapy drugs. Expression of cellular FLICE-like inhibitory protein-short did not significantly inhibit chemotherapy lethality but did significantly reduce enhanced killing in combination with sildenafil. Overexpression of B-cell lymphoma-extra large suppressed individual and combination drug toxicities. Knock down of CD95 or Fas-associated death domain protein suppressed drug combination toxicity. Combination toxicity was also abolished by necrostatin or receptor interacting protein 1 knock down. Treatment with PDE5 inhibitors and chemotherapy drugs promoted autophagy, which was maximal at ∼24 hour posttreatment, and 3-methyl adenine or knock down of Beclin1 suppressed drug combination lethality by ∼50%. PDE5 inhibitors enhanced and prolonged the induction of DNA damage as judged by Comet assays and γhistone 2AX (γH2AX) and checkpoint kinase 2 (CHK2) phosphorylation. Knock down of ataxia telangiectasia mutated suppressed γH2AX and CHK2 phosphorylation and enhanced drug combination lethality. Collectively our data demonstrate that the combination of PDE5 inhibitors with standard of care chemotherapy agents for gastrointestinal/genitourinary cancers represents a novel modality.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Neoplasias Urogenitais/tratamento farmacológico , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Neoplasias Gastrointestinais/metabolismo , Histonas/metabolismo , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Ratos , Neoplasias Urogenitais/metabolismo , Receptor fas/metabolismo
6.
Mol Pharmacol ; 84(4): 562-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877009

RESUMO

The present studies were undertaken to determine whether the multikinase inhibitors sorafenib/regorafenib cooperated with clinically relevant , phosphatidyl inositol 3 kinase (PI3K)-thymoma viral proto-oncogene (AKT) inhibitors to kill tumor cells. In liver, colorectal, lung, breast, kidney, and brain cancer cells, at clinically achievable doses, sorafenib/regorafenib and the PI3K inhibitor acetic acid (1S,4E,10R,11R,13S,14R)-[4-diallylaminomethylene-6-hydroxy-1-methoxymethyl-10,13-dimethyl-3,7,17-trioxo-1,3,4,7,10,11,12,13,14,15,16,17-dodecahydro-2-oxa-cyclopenta[a]phenanthren-11-yl ester (PX-866) cooperated in a greater than additive fashion to kill tumor cells. Cells lacking phosphatase and tensin homolog were as sensitive to the drug combination as cells expressing the protein. Similar data were obtained using the AKT inhibitors perifosine and 8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-1,2,4-triazolo[3,4-f] [1,6]naphthyridin-3(2H)-one hydrochloride (MK2206). PX-866 treatment abolished AKT/glycogen synthase kinase 3 (GSK3) phosphorylation, and cell killing correlated with reduced activity of AKT and mammalian target of rapamycin (mTOR). Expression of activated AKT and to a lesser extent activated mTOR reduced drug combination lethality. Expression of B-cell lymphoma-extra large or dominant negative caspase 9, but not cellular FLICE (FADD-like IL-1b-converting enzyme)-inhibitory protein short, protected cells from the drug combination. Treatment of cells with PX-866 increased protein levels of p62, lysosome-associated membrane protein 2 (LAMP2), and microtubule-associated protein light chain (LC) 3 and LC3II that correlated with a large increase in LC3-green fluorescent protein (GFP) vesicle numbers. Exposure of PX-866 treated cells to sorafenib reduced p62 and LAMP2 levels, decreased the ratio of LC3 to LC3II, and reduced LC3-GFP vesicle levels. Knockdown of Beclin1 or autophagy-related 5 suppressed drug toxicity by ∼40%. In vivo, sorafenib and PX-866 or regorafenib and MK2206 cooperated to suppress the growth of established HuH7 and HCT116 tumors, respectively. Collectively our data demonstrate that the combination of sorafenib family kinase inhibitors with inhibitors of the PI3K/AKT pathway kills tumor cells in vitro and in vivo.


Assuntos
Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Piridinas/administração & dosagem , Timoma/tratamento farmacológico , Timoma/patologia , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/patologia , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Gonanos/administração & dosagem , Células Hep G2 , Humanos , Camundongos , Niacinamida/administração & dosagem , Fosfatidilinositol 3-Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sorafenibe , Timoma/metabolismo , Neoplasias do Timo/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Pharmacol ; 82(6): 1217-29, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22989520

RESUMO

Previous studies showed that lapatinib and obatoclax interact in a greater-than-additive fashion to cause cell death and do so through a toxic form of autophagy. The present studies sought to extend our analyses. Lapatinib and obatoclax killed multiple tumor cell types, and cells lacking phosphatase and tensin homolog (PTEN) function were relatively resistant to drug combination lethality; expression of PTEN in PTEN-null breast cancer cells restored drug sensitivity. Coadministration of lapatinib with obatoclax elicited autophagic cell death that was attributable to the actions of mitochondrial reactive oxygen species. Wild-type cells but not mitochondria-deficient rho-zero cells were radiosensitized by lapatinib and obatoclax treatment. Activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase 1/2 (JNK1/2) by the drug combination was enhanced by radiation, and signaling by p38 MAPK and JNK1/2 promoted cell killing. In immunohistochemical analyses, the autophagosome protein p62 was determined to be associated with protein kinase-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1, as well as with binding immunoglobulin protein/78-kDa glucose-regulated protein, in drug combination-treated cells. Knockdown of PERK suppressed drug-induced autophagy and protected tumor cells from the drug combination. Knockdown of PERK suppressed the reduction in Mcl-1 expression after drug combination exposure, and overexpression of Mcl-1 protected cells. Our data indicate that mitochondrial function plays an essential role in cell killing by lapatinib and obatoclax, as well as radiosensitization by this drug combination.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Indóis , Lapatinib , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Pirróis/administração & dosagem , Quinazolinas/administração & dosagem , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Mol Pharmacol ; 81(4): 527-40, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22219388

RESUMO

Prior studies demonstrated that resistance to the ERBB1/2 inhibitor lapatinib could be overcome by the B cell CLL/lymphoma-2 (BCL-2) family antagonist obatoclax (GX15-070). Coadministration of lapatinib with obatoclax caused synergistic cell killing by eliciting autophagic cell death that was dependent upstream on mitochondrial reactive oxygen species generation and increased p62 levels and downstream on activation of p38 mitogen-activated protein kinase and inactivation of mammalian target of rapamycin. By immunohistochemical analysis, in drug combination-treated cells, microtubule-associated protein light chain 3 (LC3) associated with mitochondrial (cytochrome c oxidase), autophagosome (p62), and autolysosome (lysosomal associated membrane protein 2) proteins. Treatment of cells with 3-methyladenine or knockdown of beclin 1 was protective, whereas chloroquine treatment had no protective effect. Expression of myeloid cell leukemia-1 (MCL-1), compared with that of BCL-2 or BCL-2-related gene long isoform, protected against drug combination lethality. Lapatinib and obatoclax-initiated autophagy depended on NOXA-mediated displacement of the prosurvival BCL-2 family member, MCL-1, from beclin 1, which was essential for the initiation of autophagy. Taken together, our data argue that lapatinib and obatoclax-induced toxic autophagy is due to impaired autophagic degradation, and this disturbance of autophagic flux leads to an accumulation of toxic proteins and loss of mitochondrial function.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Pirróis/farmacologia , Quinazolinas/farmacologia , Morte Celular , Linhagem Celular Tumoral , Genes erbB-2 , Humanos , Indóis , Lapatinib
9.
Mol Pharmacol ; 81(5): 748-58, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357666

RESUMO

Prior studies in breast cancer cells have shown that lapatinib and obatoclax interact in a greater than additive fashion to cause cell death and do so through a toxic form of autophagy. The present studies sought to extend our analyses to the central nervous system (CNS) tumor cells and to further define mechanisms of drug action. Lapatinib and obatoclax killed multiple CNS tumor isolates. Cells lacking PTEN (phosphatase and tensin homolog on chromosome 10) function were relatively resistant to drug combination lethality; expression of PTEN in PTEN-null cells restored drug sensitivity, and knockdown of PTEN promoted drug resistance. On the basis of knockdown of ERBB1-4 (erythroblastic leukemia viral oncogene homolog 1-4), we discovered that the inhibition of ERBB1/3/4 receptors were most important for enhancing obatoclax lethality rather than ERBB2. In parallel, we noted in CNS tumor cells that knockdown of BCL-xL (B-cell lymphoma-extra large)and MCL-1 (myeloid cell leukemia-1) interacted in an additive fashion to facilitate lapatinib lethality. Pretreatment of tumor cells with obatoclax enhanced the lethality of lapatinib to a greater extent than concomitant treatment. Treatment of animals carrying orthotopic CNS tumor isolates with lapatinib- and obatoclax-prolonged survival. Altogether, our data show that lapatinib and obatoclax therapy could be of use in the treatment of tumors located in the CNS.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirróis/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-3/antagonistas & inibidores , Proteína bcl-X/antagonistas & inibidores , Autofagia , Linhagem Celular Tumoral , Humanos , Indóis , Lapatinib , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias/patologia , PTEN Fosfo-Hidrolase/fisiologia , Receptor ErbB-4
10.
Mol Pharmacol ; 79(3): 368-80, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21119025

RESUMO

Agents that generate reactive oxygen species (ROS) are recognized to enhance MDA-7/IL-24 lethality. The present studies focused on clarifying how such agents enhanced MDA-7/IL-24 toxicity in renal cell carcinoma cells (RCCs). Infection of RCCs with a tropism-modified serotype 5/3 adenovirus expressing MDA-7/IL-24 (Ad.5/3-mda-7) caused plasma membrane clustering of CD95 and CD95 association with pro-caspase 8, effects that were enhanced by combined exposure to 17-N-allylamino-17-demethoxygeldanamycin (17AAG), As(2)O(3), or fenretinide and that correlated with enhanced cell killing. Knockdown of CD95 or expression of cellular FADD (Fas-associated protein with death domain)-like interleukin-1ß-converting enzyme inhibitory protein, short form (c-FLIP-s) blocked enhanced killing. Inhibition of ROS generation, elevated cytosolic Ca(2+), or de novo ceramide synthesis blocked Ad.5/3-mda-7 ± agent-induced CD95 activation and the enhancement of apoptosis. Ad.5/3-mda-7 increased ceramide levels in a PERK-dependent fashion that were responsible for elevated cytosolic Ca(2+) levels that promoted ROS generation; 17AAG did not further enhance cytokine-induced ceramide generation. In vivo, infection of RCC tumors with Ad.5/3-mda-7 suppressed the growth of infected tumors that was enhanced by exposure to 17AAG. Our data indicate that in RCCs, Ad.5/3-mda-7-induced ceramide generation plays a central role in tumor cell killing and inhibition of multiple signaling pathways may have utility in promoting MDA-7/IL-24 lethality in renal cancer.


Assuntos
Adenoviridae/metabolismo , Carcinoma de Células Renais/virologia , Ceramidas/metabolismo , Interleucinas/biossíntese , Neoplasias Renais/virologia , Espécies Reativas de Oxigênio/metabolismo , Adenoviridae/fisiologia , Animais , Trióxido de Arsênio , Arsenicais/farmacologia , Benzoquinonas/farmacologia , Western Blotting , Carcinoma de Células Renais/química , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Ceramidas/análise , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Feminino , Citometria de Fluxo , Humanos , Interleucinas/metabolismo , Interleucinas/fisiologia , Neoplasias Renais/química , Neoplasias Renais/metabolismo , Lactamas Macrocíclicas/farmacologia , Camundongos , Camundongos Nus , Óxidos/farmacologia , Espécies Reativas de Oxigênio/análise , Transfecção
11.
Cancer Invest ; 28(6): 608-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20210521

RESUMO

Hsp90alpha's vital role in cell cycle progression and apoptosis together with its presence in gliomas and absence in normal tissue, make it a credible target for cancer therapy. Three sets of dsRNA oligos designed to align different regions of the hsp90alpha sequence were used to downregulate hsp90alpha. SiRNA 1, 2, and 3 resulted in significant levels of silencing of hsp90alpha after 48 hr treatment (p < .0001). Concurrent treatment of the glioma cell line U87-MG with siRNA 1 and temozolomide (TMZ) resulted in a 13-fold reduction in the dose of TMZ required to achieve a similar effect if TMZ was used alone.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/terapia , Dacarbazina/análogos & derivados , Terapia Genética/métodos , Glioma/terapia , Proteínas de Choque Térmico HSP90/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Adjuvante , Cisplatino/farmacologia , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Proteínas de Choque Térmico HSP90/genética , Humanos , Concentração Inibidora 50 , RNA Mensageiro/metabolismo , Temozolomida , Fatores de Tempo , Transfecção
12.
Clin Cancer Res ; 25(2): 663-673, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30201763

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common and most lethal primary malignant brain tumor. The receptor tyrosine kinase MET is frequently upregulated or overactivated in GBM. Although clinically applicable MET inhibitors have been developed, resistance to single modality anti-MET drugs frequently occurs, rendering these agents ineffective. We aimed to determine the mechanisms of MET inhibitor resistance in GBM and use the acquired information to develop novel therapeutic approaches to overcome resistance.Experimental Design: We investigated two clinically applicable MET inhibitors: crizotinib, an ATP-competitive small molecule inhibitor of MET, and onartuzumab, a monovalent monoclonal antibody that binds to the extracellular domain of the MET receptor. We developed new MET inhibitor-resistant cells lines and animal models and used reverse phase protein arrays (RPPA) and functional assays to uncover the compensatory pathways in MET inhibitor-resistant GBM. RESULTS: We identified critical proteins that were altered in MET inhibitor-resistant GBM including mTOR, FGFR1, EGFR, STAT3, and COX-2. Simultaneous inhibition of MET and one of these upregulated proteins led to increased cell death and inhibition of cell proliferation in resistant cells compared with either agent alone. In addition, in vivo treatment of mice bearing MET-resistant orthotopic xenografts with COX-2 or FGFR pharmacological inhibitors in combination with MET inhibitor restored sensitivity to MET inhibition and significantly inhibited tumor growth. CONCLUSIONS: These data uncover the molecular basis of adaptive resistance to MET inhibitors and identify new FDA-approved multidrug therapeutic combinations that can overcome resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Invest ; 26(9): 900-4, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18798074

RESUMO

Despite studies suggesting a role for HSP90alpha in tumorigenesis, there are no reports as to its expression in normal human brain tissue. In this study, the expression of HSP90alpha was evaluated in both cell lines (3 gliomas and 2 controls) and brain tissue specimens of 10 patients (8 gliomas and 2 normal brain tissues). No HSP90alpha protein was detected in either normal cell lines or normal brain tissue. However, 8/8 glioma tissues and 3/3 glioma cell lines did express HSP90alpha. These findings provide a rationale for targeting HSP90alpha protein as a therapeutic candidate for glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Proteínas de Choque Térmico HSP90/biossíntese , Adolescente , Adulto , Idoso , Linhagem Celular , Feminino , Proteínas de Choque Térmico HSP90/genética , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas , Regulação para Cima , Adulto Jovem
14.
Cancers (Basel) ; 10(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200436

RESUMO

The tumor suppressor and transcription factor p53 plays critical roles in tumor prevention by orchestrating a wide variety of cellular responses, including damaged cell apoptosis, maintenance of genomic stability, inhibition of angiogenesis, and regulation of cell metabolism and tumor microenvironment. TP53 is one of the most commonly deregulated genes in cancer. The p53-ARF-MDM2 pathway is deregulated in 84% of glioblastoma (GBM) patients and 94% of GBM cell lines. Deregulated p53 pathway components have been implicated in GBM cell invasion, migration, proliferation, evasion of apoptosis, and cancer cell stemness. These pathway components are also regulated by various microRNAs and long non-coding RNAs. TP53 mutations in GBM are mostly point mutations that lead to a high expression of a gain of function (GOF) oncogenic variants of the p53 protein. These relatively understudied GOF p53 mutants promote GBM malignancy, possibly by acting as transcription factors on a set of genes other than those regulated by wild type p53. Their expression correlates with worse prognosis, highlighting their potential importance as markers and targets for GBM therapy. Understanding mutant p53 functions led to the development of novel approaches to restore p53 activity or promote mutant p53 degradation for future GBM therapies.

15.
Brain Res ; 1134(1): 45-52, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17196947

RESUMO

Although scientific advances have recognised the prognostic power of telomerase activity in different cancers, as yet there has been no investigation regarding the expression variation of telomerase subunits in glioma tissues and cell lines. In this study, a recurrent anaplastic ependymoma and seven glioblastoma biopsy samples, four cell lines and four controls including two normal brain tissues were analysed for telomerase subunit expression profiles together with telomerase activity. Since telomerase activity is linked to tumourgenesis, the genes were analysed with respect to their expression variation. TEP1 was expressed in all glioma cell lines and 70% of glioblastoma tissues, in addition to the control brain tissues. Tankyrase was expressed in 85% of the glioblastoma tissues and was down-regulated in the recurrent anaplastic ependymoma tissue control cell lines. However, it was expressed in the control tissues. Dyskerin was expressed in all cell lines and tissues apart from U87-MG and NHA cells and the recurrent anaplastic ependymoma tissue. As expected, PARP1 and GAPDH showed constitutive expression throughout all cell lines and tissues since both are known to be housekeeping genes. hTERT was expressed in all glioma cell lines and tissues but was absent in the control cells and tissues. Telomerase activity was absent in IPDDC-A2 cells and 57% of the glioblastoma tissues. These results suggest that hTERT expression and not telomerase activity possibly represents a simple and reliable biological diagnostic tool.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Glioma/enzimologia , Glioma/genética , Telomerase/genética , Biópsia , Neoplasias Encefálicas/diagnóstico , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Glioma/diagnóstico , Humanos , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Tanquirases/genética
16.
Cancers (Basel) ; 9(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696366

RESUMO

Glioblastoma (GBM) is a lethal brain tumor with dismal prognosis. Current therapeutic options, consisting of surgery, chemotherapy and radiation, have only served to marginally increase patient survival. Receptor tyrosine kinases (RTKs) are dysregulated in approximately 90% of GBM; attributed to this, research has focused on inhibiting RTKs as a novel and effective therapy for GBM. Overexpression of RTK mesenchymal epithelial transition (MET), and its ligand, hepatocyte growth factor (HGF), in GBM highlights a promising new therapeutic target. This review will discuss the role of MET in cell cycle regulation, cell proliferation, evasion of apoptosis, cell migration and invasion, angiogenesis and therapeutic resistance in GBM. It will also discuss the modes of deregulation of HGF/MET and their regulation by microRNAs. As the HGF/MET pathway is a vital regulator of multiple pro-survival pathways, efforts and strategies for its exploitation for GBM therapy are also described.

17.
Cancer Res ; 77(13): 3479-3490, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512247

RESUMO

Glioblastoma (GBM) stem-like cells (GSC) promote tumor initiation, progression, and therapeutic resistance. Here, we show how GSCs can be targeted by the FDA-approved drug mibefradil, which inhibits the T-type calcium channel Cav3.2. This calcium channel was highly expressed in human GBM specimens and enriched in GSCs. Analyses of the The Cancer Genome Atlas and REMBRANDT databases confirmed upregulation of Cav3.2 in a subset of tumors and showed that overexpression associated with worse prognosis. Mibefradil treatment or RNAi-mediated attenuation of Cav3.2 was sufficient to inhibit the growth, survival, and stemness of GSCs and also sensitized them to temozolomide chemotherapy. Proteomic and transcriptomic analyses revealed that Cav3.2 inhibition altered cancer signaling pathways and gene transcription. Cav3.2 inhibition suppressed GSC growth in part by inhibiting prosurvival AKT/mTOR pathways and stimulating proapoptotic survivin and BAX pathways. Furthermore, Cav3.2 inhibition decreased expression of oncogenes (PDGFA, PDGFB, and TGFB1) and increased expression of tumor suppressor genes (TNFRSF14 and HSD17B14). Oral administration of mibefradil inhibited growth of GSC-derived GBM murine xenografts, prolonged host survival, and sensitized tumors to temozolomide treatment. Our results offer a comprehensive characterization of Cav3.2 in GBM tumors and GSCs and provide a preclinical proof of concept for repurposing mibefradil as a mechanism-based treatment strategy for GBM. Cancer Res; 77(13); 3479-90. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Canais de Cálcio Tipo T/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Neoplasias Encefálicas/genética , Canais de Cálcio Tipo T/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/genética , Humanos , Camundongos , Transdução de Sinais , Transfecção
18.
Cancer Biol Ther ; 16(5): 733-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803131

RESUMO

The present studies sought to determine whether the anti-folate pemetrexed (Alimta) and the sphingosine-1-phosphate receptor modulator FTY720 (Fingolimod, Gilenya) interacted to kill tumor cells. FTY720 and pemetrexed interacted in a greater than additive fashion to kill breast, brain and colorectal cancer cells. Loss of p53 function weakly enhanced the toxicity of FTY720 whereas deletion of activated RAS strongly or expression of catalytically inactive AKT facilitated killing. Combined drug exposure reduced the activity of AKT, p70 S6K and mTOR and activated JNK and p38 MAPK. Expression of activated forms of AKT, p70 S6K and mTOR or inhibition of JNK and p38 MAPK suppressed the interaction between FTY720 and pemetrexed. Treatment of cells with FTY720 and pemetrexed increased the numbers of early autophagosomes but not autolysosomes, which correlated with increased LC3II processing and increased p62 levels, suggestive of stalled autophagic flux. Knock down of ATG5 or Beclin1 suppressed autophagosome formation and cell killing. Knock down of ceramide synthase 6 suppressed autophagosome production and cell killing whereas knock down of ceramide synthase 2 enhanced vesicle formation and facilitated death. Collectively our findings argue that pemetrexed and FTY720 could be a novel adjunct modality for breast cancer treatment.


Assuntos
Cloridrato de Fingolimode/imunologia , Pemetrexede/imunologia , Autofagia , Linhagem Celular Tumoral , Sobrevivência Celular , Ceramidas , Humanos , Transdução de Sinais
19.
Cancer Biol Ther ; 15(2): 147-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24424112

RESUMO

Colorectal cancer (CRC) is the third most common cause of cancer-related deaths with treatment of advanced and metastatic CRC (mCRC) remaining palliative at best. (1) The epidermal growth factor receptor (EGFR) has been identified as a therapeutic target for a multitude of malignancies, including mCRC. Ligand-binding to EGFR results in the subsequent activation of multiple signal transduction pathways including the PI3K/AKT and RAS/RAF/MAPK pathways, which are vital for cell growth and survival. (2) Constitutive activation of these signaling pathways leads to deregulated cellular proliferation, malignant progression, and invasion. (3.)


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA