Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 211, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626373

RESUMO

BACKGROUND: Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. Although the etiology remains unknown, aberrant angiogenesis and inflammation play an important role in the development of this pathology. In this context, recent scientific research has identified new molecules involved in angiogenesis and inflammation, such as the prolyl oligopeptidase (PREP), a proteolytic enzyme belonging to the serine protease family, linked to the pathology of many lung diseases such as pulmonary fibrosis. Therefore, the aim of this study was to investigate the effect of a selective inhibitor of PREP, known as KYP-2047, in an in vitro and in an in vivo model of pulmonary fibrosis. METHODS: The in vitro model was performed using human alveolar A549 cells. Cells were exposed to lipopolysaccharide (LPS) 10 µg/ml and then, cells were treated with KYP-2047 at the concentrations of 1 µM, 10 µM and 50 µM. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide colorimetric assay, while inflammatory protein expression was assessed by western blots analysis. The in vivo model was induced in mice by intra-tracheal administration of bleomycin (1 mg/kg) and then treated intraperitoneally with KYP-2047 at doses of 1, 2.5 and 5 mg/kg once daily for 12 days and then mice were sacrificed, and lung tissues were collected for analyses. RESULTS: The in vitro results demonstrated that KYP-2047 preserved cell viability, reduced inflammatory process by decreasing IL-18 and TNF-α, and modulated lipid peroxidation as well as nitrosative stress. The in vivo pulmonary fibrosis has demonstrated that KYP-2047 was able to restore histological alterations reducing lung injury. Our data demonstrated that KYP-2047 significantly reduced angiogenesis process and the fibrotic damage modulating the expression of fibrotic markers. Furthermore, KYP-2047 treatment modulated the IκBα/NF-κB pathway and reduced the expression of related pro-inflammatory enzymes and cytokines. Moreover, KYP-2047 was able to modulate the JAK2/STAT3 pathway, highly involved in pulmonary fibrosis. CONCLUSION: In conclusion, this study demonstrated the involvement of PREP in the pathogenesis of pulmonary fibrosis and that its inhibition by KYP-2047 has a protective role in lung injury induced by BLM, suggesting PREP as a potential target therapy for pulmonary fibrosis. These results speculate the potential protective mechanism of KYP-2047 through the modulation of JAK2/STAT3 and NF-κB pathways.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Prolil Oligopeptidases , NF-kappa B , Inflamação
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834949

RESUMO

Over the last three years, humanity has been facing one of the most serious health emergencies due to the global spread of Coronavirus disease (COVID-19). In this scenario, the research of reliable biomarkers of mortality from COVID-19 represents a primary objective. Pentraxin 3 (PTX3), a highly conserved protein of innate immunity, seems to be associated with a worse outcome of the disease. Based on the above, this systematic review and meta-analysis evaluated the prognostic potential of PTX3 in COVID-19 disease. We included 12 clinical studies evaluating PTX3 in COVID-19 patients. From our research, we found increased PTX3 levels compared to healthy subjects, and notably, PTX3 was even more augmented in severe COVID-19 rather than non-severe cases. Moreover, we performed a meta-analysis to establish if there were differences between ICU and non-ICU COVID-19 patients in PTX3-related death. We combined 5 studies for a total of 543 ICU vs. 515 non-ICU patients. We found high significative PTX3-related death in ICU COVID-19 hospitalized individuals (184 out of 543) compared to non-ICU (37 out of 515), with an overall effect OR: 11.30 [2.00, 63.73]; p = 0.006. In conclusion, we probed PTX3 as a reliable marker of poor outcomes after COVID-19 infection as well as a predictor of hospitalized patients' stratification.


Assuntos
COVID-19 , Humanos , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , COVID-19/metabolismo , COVID-19/mortalidade , Prognóstico
3.
Int J Mol Sci ; 24(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37762499

RESUMO

Currently, biological markers for COVID-19 disease severity still constitute the main goal of enhancing an efficient treatment to reduce critical consequences such as an abnormal systemic inflammatory response. In this regard, the latest research has shown that Pentraxin 3 (PTX3), a highly conserved innate immunity protein, may serve as a valuable biochemical marker. Based on this evidence, we conducted a case-control study to compare the PTX3 serum levels and several immune-inflammatory mediators of 80 healthcare workers who were subdivided into subjects who were previously infected with SARS-CoV-2 (n = 40) and individuals who were never infected (n = 40). Using a commercially available Enzyme-Linked Immunosorbent Assay (ELISA), PTX3 and various immune-inflammatory protein levels were assessed in serum samples, while also considering possible variables (e.g., gender-related differences). We have shown elevated levels of PTX3 and other inflammatory proteins in previously infected COVID-19-positive subjects (p < 0.001). Moreover, the obtained data also indicate a degree of severity influenced by gender, as shown by the subgroup analysis, in which PTX3 expression was more pronounced in previously COVID-19-positive males (p < 0.001) than in females (p < 0.05) compared to the respective controls. In addition, our data further validate, through a direct comparison of previously COVID-19-positive subjects, greater pro-inflammatory levels in males than in females. Overall, our results may support the validity of PTX3 as a systemic biomarker in prolonged systemic inflammatory responses in the context of COVID-19. Thus, PTX3 modulation could constitute an effective therapeutic strategy for improving the recovery from COVID-19 and its systemic long-term consequences.

4.
Nat Prod Res ; : 1-20, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269580

RESUMO

Intraocular pressure (IOP) positively correlates with both normal and high-tension glaucoma. To date, IOP targeting remains the validated pharmacological approach in counteracting glaucoma progression as well as in halting vision loss. Among the different adjuvant compounds, evidence highlighted the potential effectiveness of Palmitoylethanolamide (PEA), an endogenous fatty acid amide. Thus, a systematic review of the literature was conducted, thoroughly evaluating PEA treatment regimen in decreasing IOP in patients with eye disorders. We checked for articles across the scientific databases Pubmed (MEDLINE), Embase (OVID), and Web of Science from the inception to 30 August 2023, and a total of 828 articles were recovered. Six of these studies (199 patients) were included in the systematic review after the study selection process, and three studies for meta-analysia. Overall, PEA showed significant efficacy in reducing IOP in patients, this encourages its clinical use in glaucoma as well as across different forms of eye disorders.

5.
Diseases ; 12(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38667532

RESUMO

Since the inception of the SARS-CoV-2 pandemic, healthcare systems around the world observed an increased rate of Acute Limb Ischemia (ALI) in patients with a COVID-19 infection. Despite several pieces of evidence suggesting that COVID-19 infection may also worsen the prognosis associated with ALI, only a small number of published studies include a direct comparison regarding the outcomes of both COVID-19 and non-COVID-19 ALI patients. Based on the above, a systematic review and a meta-analysis of the literature were conducted, evaluating differences in the incidence of two major outcomes (amputation and mortality rate) between patients concurrently affected by COVID-19 and negative ALI subjects. PubMed (MEDLINE), Web of Science, and Embase (OVID) databases were scrutinized from January 2020 up to 31 December 2023, and 7906 total articles were recovered. In total, 11 studies (n: 15,803 subjects) were included in the systematic review, and 10 of them (15,305 patients) were also included in the meta-analysis. Across all the studies, COVID-19-positive ALI patients experienced worse outcomes (mortality rates ranging from 6.7% to 47.2%; amputation rates ranging from 7.0% to 39.1%) compared to non-infected ALI patients (mortality rates ranging from 3.1% to 16.7%; amputation rates ranging from 2.7% to 18%). Similarly, our meta-analysis shows that both the amputation rate (OR: 2.31; 95% CI: 1.68-3.17; p < 0.00001) and mortality (OR: 3.64; 95% CI: 3.02-4.39; p < 0.00001) is significantly higher in COVID-19 ALI patients compared to ALI patients.

6.
Biomedicines ; 11(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37626685

RESUMO

Post-Covid Olfactory Dysfunction (PCOD) is characterized by olfactory abnormalities, hyposmia, and anosmia, which are among the most often enduring symptoms in individuals who have recovered from SARS-CoV-2 infection. This disorder has been reported to persist in subsets of patients well after 12 months following infection, significantly affecting their quality of life. Despite the high prevalence of PCOD among patients who suffered from SARS-CoV-2 infection, specific therapeutic strategies are still limited. Among these, emerging evidence seems to indicate the administration of CoUltraPEALut, a combination of micronized Palmitoylethanolamide (PEA), an endogenous fatty acid amide, and Luteolin, a natural antioxidant flavonoid, as a viable therapy, especially when given as an adjuvant to olfactory training. Based on the above, a systematic review and a meta-analysis of the literature were conducted, with the aim of evaluating the efficacy of CoUltraPEALut as an addition to olfactory training (OT), in treating PCOD symptoms. Pubmed (MEDLINE), Embase (OVID), and Web of Science scientific databases were screened from the inception until 31 May 2023, and a total of 407 articles were recovered; only five of these studies (441 total patients between treated and control groups) were included in the systematic review. CoUltraPEALut demonstrated significant efficacy in the overall recovery of the olfactory function, compared to the conventional therapy, suggesting that it could represent a possible future adjuvant treatment for PCOD.

7.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980182

RESUMO

Primary brain tumors are a leading cause of death worldwide and are characterized by extraordinary heterogeneity and high invasiveness. Current drug and radiotherapy therapies combined with surgical approaches tend to increase the five-year survival of affected patients, however, the overall mortality rate remains high, thus constituting a clinical challenge for which the discovery of new therapeutic strategies is needed. In this field, novel immunotherapy approaches, aimed at overcoming the complex immunosuppressive microenvironment, could represent a new method of treatment for central nervous system (CNS) tumors. Chemokines especially are a well-defined group of proteins that were so named due to their chemotactic properties of binding their receptors. Chemokines regulate the recruitment and/or tissue retention of immune cells as well as the mobilization of tumor cells that have undergone epithelial-mesenchymal transition, promoting tumor growth. On this basis, this review focuses on the function and involvement of chemokines and their receptors in primary brain tumors, specifically examining chemokine-targeting immunotherapies as one of the most promising strategies in neuro-oncology.


Assuntos
Neoplasias Encefálicas , Quimiocinas , Humanos , Quimiocinas/metabolismo , Imunoterapia , Neoplasias Encefálicas/terapia , Microambiente Tumoral
8.
Cancers (Basel) ; 14(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36011024

RESUMO

Glioblastoma is the most commonly malignant and aggressive brain tumor, with a high mortality rate. The role of the purine nucleotide adenosine and its interaction with its four subtypes receptors coupled to the different G proteins, A1, A2A, A2B, and A3, and its different physiological functions in different systems and organs, depending on the active receptor subtype, has been studied for years. Recently, several works have defined extracellular adenosine as a tumoral protector because of its accumulation in the tumor microenvironment. Its presence is due to both the interaction with the A2A receptor subtype and the increase in CD39 and CD73 gene expression induced by the hypoxic state. This fact has fueled preclinical and clinical research into the development of efficacious molecules acting on the adenosine pathway and blocking its accumulation. Given the success of anti-cancer immunotherapy, the new strategy is to develop selective A2A receptor antagonists that could competitively inhibit binding to its endogenous ligand, making them reliable candidates for the therapeutic management of brain tumors. Here, we focused on the efficacy of adenosine receptor antagonists and their enhancement in anti-cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA