Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 38(8): 1487-1495, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460355

RESUMO

PURPOSE: MYCN onco-gene amplification in neuroblastoma confers patients to the high-risk disease category for which prognosis is poor and more aggressive multimodal treatment is indicated. This retrospective study leverages machine learning techniques to develop a computed tomography (CT)-based model incorporating semantic and non-semantic features for non-invasive prediction of MYCN amplification status in pediatric neuroblastoma. METHODS: From 2009 to 2020, 54 pediatric patients treated for neuroblastoma at a specialized children's hospital with pre-treatment contrast-enhanced CT and MYCN status were identified (training cohort, n = 44; testing cohort, n = 10). Six morphologic features and 107 quantitative gray-level texture radiomics features extracted from manually drawn volume-of-interest were analyzed. Following feature selection and class balancing, the final predictive model was developed with eXtreme Gradient Boosting (XGBoost) algorithm. Accumulated local effects (ALE) plots were used to explore main effects of the predictive features. Tumor texture maps were also generated for visualization of radiomics features. RESULTS: One morphologic and 2 radiomics features were selected for model building. The XGBoost model from the training cohort yielded an area under the receiver operating characteristics curve (AUC-ROC) of 0.930 (95% CI, 0.85-1.00), optimized F1-score of 0.878, and Matthews correlation coefficient (MCC) of 0.773. Evaluation on the testing cohort returned AUC-ROC of 0.880 (95% CI, 0.64-1.00), optimized F1-score of 0.933, and MCC of 0.764. ALE plots and texture maps showed higher "GreyLevelNonUniformity" values, lower "Strength" values, and higher number of image-defined risk factors contribute to higher predicted probability of MYCN amplification. CONCLUSION: The machine learning model reliably classified MYCN amplification in pediatric neuroblastoma and shows potential as a surrogate imaging biomarker.


Assuntos
Amplificação de Genes , Neuroblastoma , Criança , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/genética , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
2.
Med Biol Eng Comput ; 61(3): 847-865, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36624356

RESUMO

Traumatic brain injury (TBI) engenders traumatic necrosis and penumbra-areas of secondary neural injury which are crucial targets for therapeutic interventions. Segmenting manually areas of ongoing changes like necrosis, edema, hematoma, and inflammation is tedious, error-prone, and biased. Using the multi-parametric MR data from a rodent model study, we demonstrate the effectiveness of an end-end deep learning global-attention-based UNet (GA-UNet) framework for automatic segmentation and quantification of TBI lesions. Longitudinal MR scans (2 h, 1, 3, 7, 14, 30, and 60 days) were performed on eight Sprague-Dawley rats after controlled cortical injury was performed. TBI lesion and sub-regions segmentation was performed using 3D-UNet and GA-UNet. Dice statistics (DSI) and Hausdorff distance were calculated to assess the performance. MR scan variations-based (bias, noise, blur, ghosting) data augmentation was performed to develop a robust model.Training/validation median DSI for U-Net was 0.9368 with T2w and MPRAGE inputs, whereas GA-UNet had 0.9537 for the same. Testing accuracies were higher for GA-UNet than U-Net with a DSI of 0.8232 for the T2w-MPRAGE inputs.Longitudinally, necrosis remained constant while oligemia and penumbra decreased, and edema appearing around day 3 which increased with time. GA-UNet shows promise for multi-contrast MR image-based segmentation/quantification of TBI in large cohort studies.


Assuntos
Lesões Encefálicas Traumáticas , Aprendizado Profundo , Ratos , Animais , Ratos Sprague-Dawley , Imageamento por Ressonância Magnética , Estudos de Coortes , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA