RESUMO
Peripheral artery disease (PAD) is a vascular pathology with high prevalence among the aging population. PAD is associated with decreased cognitive performance, but the underlying mechanisms remain obscure. Normal brain function critically depends on an adequate adjustment of cerebral blood supply to match the needs of active brain regions via neurovascular coupling (NVC). NVC responses depend on healthy microvascular endothelial function. PAD is associated with significant endothelial dysfunction in peripheral arteries, but its effect on NVC responses has not been investigated. This study was designed to test the hypothesis that NVC and peripheral microvascular endothelial function are impaired in PAD. We enrolled 11 symptomatic patients with PAD and 11 age- and sex-matched controls. Participants were evaluated for cognitive performance using the Cambridge Neuropsychological Test Automated Battery and functional near-infrared spectroscopy to assess NVC responses during the cognitive n-back task. Peripheral microvascular endothelial function was evaluated using laser speckle contrast imaging. We found that cognitive performance was compromised in patients with PAD, evidenced by reduced visual memory, short-term memory, and sustained attention. We found that NVC responses and peripheral microvascular endothelial function were significantly impaired in patients with PAD. A positive correlation was observed between microvascular endothelial function, NVC responses, and cognitive performance in the study participants. Our findings support the concept that microvascular endothelial dysfunction and neurovascular uncoupling contribute to the genesis of cognitive impairment in older PAD patients with claudication. Longitudinal studies are warranted to test whether the targeted improvement of NVC responses can prevent or delay the onset of PAD-associated cognitive decline.NEW & NOTEWORTHY Peripheral artery disease (PAD) was associated with significantly decreased cognitive performance, impaired neurovascular coupling (NVC) responses in the prefrontal cortex (PFC), left and right dorsolateral prefrontal cortices (LDLPFC and RDLPFC), and impaired peripheral microvascular endothelial function. A positive correlation between microvascular endothelial function, NVC responses, and cognitive performance may suggest that PAD-related cognitive decrement is mechanistically linked, at least in part, to generalized microvascular endothelial dysfunction and subsequent impairment of NVC responses.
Assuntos
Disfunção Cognitiva , Acoplamento Neurovascular , Doença Arterial Periférica , Idoso , Envelhecimento/fisiologia , Arteríolas , Circulação Cerebrovascular/fisiologia , Humanos , Acoplamento Neurovascular/fisiologiaRESUMO
Transient receptor potential melastatin-4 (TRPM4) is activated by an increase in intracellular Ca2+ concentration and is expressed on smooth muscle cells (SMCs). It is implicated in the myogenic constriction of cerebral arteries. We hypothesized that TRPM4 has a general role in intracellular Ca2+ signal amplification in a wide range of blood vessels. TRPM4 function was tested with the TRPM4 antagonist 9-phenanthrol and the TRPM4 activator A23187 on the cardiovascular responses of the rat, in vivo and in isolated basilar, mesenteric, and skeletal muscle arteries. TRPM4 inhibition by 9-phenanthrol resulted in hypotension and a decreased heart rate in the rat. TRPM4 inhibition completely antagonized myogenic tone development and norepinephrine-evoked vasoconstriction, and depolarization (high extracellular KCl concentration) evoked vasoconstriction in a wide range of peripheral arteries. Vasorelaxation caused by TRPM4 inhibition was accompanied by a significant decrease in intracellular Ca2+ concentration, suggesting an inhibition of Ca2+ signal amplification. Immunohistochemistry confirmed TRPM4 expression in the smooth muscle cells of the peripheral arteries. Finally, TRPM4 activation by the Ca2+ ionophore A23187 was competitively inhibited by 9-phenanthrol. In summary, TRPM4 was identified as an essential Ca2+-amplifying channel in peripheral arteries, contributing to both myogenic tone and agonist responses. These results suggest an important role for TRPM4 in the circulation. The modulation of TRPM4 activity may be a therapeutic target for hypertension. Furthermore, the Ca2+ ionophore A23187 was identified as the first high-affinity (nanomolar) direct activator of TRPM4, acting on the 9-phenanthrol binding site.
Assuntos
Sinalização do Cálcio , Canais de Cátion TRPM/metabolismo , Vasoconstrição , Administração Intravenosa , Animais , Artérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Calcimicina/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Ionóforos/farmacologia , Masculino , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Norepinefrina/farmacologia , Fenantrenos/administração & dosagem , Fenantrenos/farmacologia , Cloreto de Potássio/farmacologia , Ratos Wistar , Canais de Cátion TRPM/agonistas , Vasoconstrição/efeitos dos fármacosRESUMO
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Assuntos
Barreira Hematoencefálica/fisiopatologia , Cognição , Disfunção Cognitiva/fisiopatologia , Endotélio Vascular/fisiopatologia , Microvasos/fisiopatologia , Acoplamento Neurovascular , Obesidade/fisiopatologia , Fatores Etários , Idoso , Animais , Barreira Hematoencefálica/metabolismo , Envelhecimento Cognitivo , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/psicologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Microcirculação , Microvasos/metabolismo , Obesidade/epidemiologia , Obesidade/psicologia , Obesidade/terapia , Medição de Risco , Fatores de RiscoRESUMO
Age-related blood-brain barrier (BBB) disruption and cerebromicrovascular rarefaction contribute importantly to the pathogenesis of both vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). Recent advances in geroscience research enable development of novel interventions to reverse age-related alterations of the cerebral microcirculation for prevention of VCID and AD. To facilitate this research, there is an urgent need for sensitive and easy-to-adapt imaging methods that enable longitudinal assessment of changes in BBB permeability and brain capillarization in aged mice and that could be used in vivo to evaluate treatment efficiency. To enable longitudinal assessment of changes in BBB permeability in aged mice equipped with a chronic cranial window, we adapted and optimized two different intravital two-photon imaging approaches. By assessing relative fluorescence changes over the baseline within a volume of brain tissue, after qualitative image subtraction of the brain microvasculature, we confirmed that, in 24-mo-old C57BL/6J mice, cumulative permeability of the microvessels to fluorescent tracers of different molecular masses (0.3 to 40 kDa) is significantly increased compared with that of 5-mo-old mice. Real-time recording of vessel cross-sections showed that apparent solute permeability of single microvessels is significantly increased in aged mice vs. young mice. Cortical capillary density, assessed both by intravital two-photon microscopy and optical coherence tomography was also decreased in aged mice vs. young mice. The presented methods have been optimized for longitudinal (over the period of 36 wk) in vivo assessment of cerebromicrovascular health in preclinical geroscience research.NEW & NOTEWORTHY Methods are presented for longitudinal detection of age-related increase in blood-brain barrier permeability and microvascular rarefaction in the mouse cerebral cortex by intravital two-photon microscopy and optical coherence tomography.
Assuntos
Envelhecimento/patologia , Barreira Hematoencefálica/diagnóstico por imagem , Permeabilidade Capilar , Córtex Cerebral/irrigação sanguínea , Microscopia Intravital , Microscopia de Fluorescência por Excitação Multifotônica , Rarefação Microvascular , Microvasos/diagnóstico por imagem , Tomografia de Coerência Óptica , Fatores Etários , Envelhecimento/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Masculino , Camundongos Endogâmicos C57BL , Densidade Microvascular , Microvasos/metabolismo , Microvasos/patologia , Fatores de TempoRESUMO
Omecamtiv mecarbil (OM) is a promising novel drug for improving cardiac contractility. We tested the therapeutic range of OM and identified previously unrecognized side effects. The Ca2+ sensitivity of isometric force production (pCa50) and force at low Ca2+ levels increased with OM concentration in human permeabilized cardiomyocytes. OM (1 µM) slowed the kinetics of contractions and relaxations and evoked an oscillation between normal and reduced intracellular Ca2+ transients, action potential lengths and contractions in isolated canine cardiomyocytes. Echocardiographic studies and left ventricular pressure-volume analyses demonstrated concentration-dependent improvements in cardiac systolic function at OM concentrations of 600-1200 µg/kg in rats. Administration of OM at a concentration of 1200 µg/kg was associated with hypotension, while doses of 600-1200 µg/kg were associated with the following aspects of diastolic dysfunction: decreases in E/A ratio and the maximal rate of diastolic pressure decrement (dP/dtmin) and increases in isovolumic relaxation time, left atrial diameter, the isovolumic relaxation constant Tau, left ventricular end-diastolic pressure and the slope of the end-diastolic pressure-volume relationship. Moreover, OM 1200 µg/kg frequently evoked transient electromechanical alternans in the rat in vivo in which normal systoles were followed by smaller contractions (and T-wave amplitudes) without major differences on the QRS complexes. Besides improving systolic function, OM evoked diastolic dysfunction and pulsus alternans. The narrow therapeutic window for OM may necessitate the monitoring of additional clinical safety parameters in clinical application.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Cardiotônicos/toxicidade , Hipotensão/induzido quimicamente , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ureia/análogos & derivados , Disfunção Ventricular Esquerda/induzido quimicamente , Função Ventricular Esquerda/efeitos dos fármacos , Adulto , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Diástole , Cães , Relação Dose-Resposta a Droga , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipotensão/metabolismo , Hipotensão/fisiopatologia , Cinética , Masculino , Miócitos Cardíacos/metabolismo , Ratos Endogâmicos WKY , Sístole , Ureia/toxicidade , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologiaRESUMO
BACKGROUND: Autonomic dysregulation in heart failure with reduced ejection fraction plays a major role in endothelial dysfunction. Low-level tragus stimulation (LLTS) is a novel, noninvasive method of autonomic modulation. METHODS AND RESULTS: We enrolled 50 patients with heart failure with reduced ejection fraction (left ventricular ejection fraction of ≤40%) in a randomized, double-blinded, crossover study. On day 1, patients underwent 60 minutes of LLTS with a transcutaneous stimulator (20 Hz, 200 µs pulse width) or sham (ear lobule) stimulation. Macrovascular function was assessed using flow-mediated dilatation in the brachial artery and cutaneous microcirculation with laser speckle contrast imaging in the hand and nail bed. On day 2, patients were crossed over to the other study arm and underwent sham or LLTS; vascular tests were repeated before and after stimulation. Compared with the sham, LLTS improved flow-mediated dilatation by increasing the percent change in the brachial artery diameter (from 5.0 to 7.5, LLTS on day 1, Pâ¯=â¯.02; and from 4.9 to 7.1, LLTS on day 2, Pâ¯=â¯.003), compared with no significant change in the sham group (from 4.6 to 4.7, Pâ¯=â¯.84 on day 1; and from 5.6 to 5.9 on day 2, Pâ¯=â¯.65). Cutaneous microcirculation in the hand showed no improvement and perfusion of the nail bed showed a trend toward improvement. CONCLUSIONS: Our study demonstrated the beneficial effects of acute neuromodulation on macrovascular function. Larger studies to validate these findings and understand mechanistic links are warranted.
Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Estudos Cross-Over , Insuficiência Cardíaca/terapia , Humanos , Volume Sistólico , Função Ventricular EsquerdaRESUMO
There has been an increasing appreciation of the role of vascular contributions to cognitive impairment and dementia (VCID) associated with old age. Strong preclinical and translational evidence links age-related dysfunction and structural alterations of the cerebral arteries, arterioles, and capillaries to the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. The low-pressure, low-velocity, and large-volume venous circulation of the brain also plays critical roles in the maintenance of homeostasis in the central nervous system. Despite its physiological importance, the role of age-related alterations of the brain venous circulation in the pathogenesis of vascular cognitive impairment and dementia is much less understood. This overview discusses the role of cerebral veins in the pathogenesis of VCID. Pathophysiological consequences of age-related dysregulation of the cerebral venous circulation are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages of venous origin, altered production of cerebrospinal fluid, impaired function of the glymphatics system, dysregulation of cerebral blood flow, and ischemic neuronal dysfunction and damage. Understanding the age-related functional and phenotypic alterations of the cerebral venous circulation is critical for developing new preventive, diagnostic, and therapeutic approaches to preserve brain health in older individuals.
Assuntos
Veias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Cognição , Envelhecimento Cognitivo/psicologia , Disfunção Cognitiva/fisiopatologia , Demência Vascular/fisiopatologia , Fatores Etários , Animais , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Demência Vascular/líquido cefalorraquidiano , Demência Vascular/etiologia , Demência Vascular/psicologia , Humanos , Fatores de RiscoRESUMO
The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH), in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF) rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT). Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF), fractional shortening (FS), isovolumetric relaxation time (IVRT), mitral annular plane systolic excursion (MAPSE), and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.
Assuntos
Coração/efeitos dos fármacos , Coração/fisiologia , Miocárdio/metabolismo , alfa-MSH/administração & dosagem , Animais , Biomarcadores , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Ecocardiografia , Teste de Tolerância a Glucose , Coração/diagnóstico por imagem , Bombas de Infusão , Masculino , Contração Miocárdica/efeitos dos fármacos , NADPH Oxidases/metabolismo , Ratos , Ratos Zucker , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
Hypertension (HTN) is a major risk factor for heart failure. We investigated the influence of HTN on cardiac contraction and relaxation in transgenic renin overexpressing rats (carrying mouse Ren-2 renin gene, mRen2, n = 6). Blood pressure (BP) was measured. Cardiac contractility was characterized by echocardiography, cellular force measurements, and biochemical assays were applied to reveal molecular mechanisms. Sprague-Dawley (SD) rats (n = 6) were used as controls. Transgenic rats had higher circulating renin activity and lower cardiac angiotensin-converting enzyme two levels. Systolic BP was elevated in mRen2 rats (235.11 ± 5.32 vs. 127.03 ± 7.56 mmHg in SD, P < 0.05), resulting in increased left ventricular (LV) weight/body weight ratio (4.05 ± 0.09 vs. 2.77 ± 0.08 mg/g in SD, P < 0.05). Transgenic renin expression had no effect on the systolic parameters, such as LV ejection fraction, cardiomyocyte Ca(2+)-activated force, and Ca(2+) sensitivity of force production. In contrast, diastolic dysfunction was observed in mRen2 compared with SD rats: early and late LV diastolic filling ratio (E/A) was lower (1.14 ± 0.04 vs. 1.87 ± 0.08, P < 0.05), LV isovolumetric relaxation time was longer (43.85 ± 0.89 vs. 28.55 ± 1.33 ms, P < 0.05), cardiomyocyte passive tension was higher (1.74 ± 0.06 vs. 1.28 ± 0.18 kN/m(2), P < 0.05), and lung weight/body weight ratio was increased (6.47 ± 0.24 vs. 5.78 ± 0.19 mg/g, P < 0.05), as was left atrial weight/body weight ratio (0.21 ± 0.03 vs. 0.14 ± 0.03 mg/g, P < 0.05). Hyperphosphorylation of titin at Ser-12742 within the PEVK domain and a twofold overexpression of protein kinase C-α in mRen2 rats were detected. Our data suggest a link between the activation of renin-angiotensin-aldosterone system and increased titin-based stiffness through phosphorylation of titin's PEVK element, contributing to diastolic dysfunction.
Assuntos
Conectina/metabolismo , Hipertensão/metabolismo , Sistema Renina-Angiotensina/fisiologia , Renina/metabolismo , Disfunção Ventricular/metabolismo , Animais , Hipertensão/genética , Hipertensão/fisiopatologia , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Renina/genética , Disfunção Ventricular/genética , Disfunção Ventricular/fisiopatologiaRESUMO
Carotid artery stenosis (CAS) often requires surgical intervention through carotid endarterectomy (CEA) to prevent stroke. Accurate cerebrovascular risk assessments are crucial in CEA, as poor collateral circulation can lead to insufficient interhemispheric blood flow compensation, resulting in ischemic complications. Therefore, understanding perioperative risk determinants is vital. This study aims to determine the impact of compromised circle of Willis (CoW) morphology on inter-hemispheric blood flow, focusing on indices based on intraoperative internal carotid artery stump pulse pressure and backflow patterns. In 80 CAS patients who underwent CEA, preoperative CT angiography for CoW was conducted. Patients were categorized into five subgroups based on their CoW anatomy and three additional groups based on intraoperative internal carotid artery (ICA) stump backflow patterns evaluated by the surgeon. Continuous blood pressure signals, including systolic, diastolic, mean, and pulse pressure values, were recorded during the procedure. The relationship between CoW anatomical variants and the systolic and diastolic segments of the averaged pressure waveforms, particularly diastolic pressure decay, was analyzed. The correlation between CoW anatomy and stump backflow intensity was also examined. Significant variability in ICA stump backflow and pressure values was evident across CoW variants. Patients with compromised CoW morphology exhibited weaker backflow patterns and lower ICA stump pulse pressure values, consistent with impaired interhemispheric blood flow. Notably, ICA stump diastolic pressure decay was consistent across most CoW variant groups, indicating developed collateral circulation in cases with CoW anomalies. Thus, impaired CoW integrity is associated with compromised interhemispheric blood flow indices based on intraoperative ICA stump pulse pressure and backflow patterns during CEA. Integrating intraoperative pulse waveform analysis with preoperative CT angiography provides a more detailed assessment of cerebrovascular risk, guiding the selective use of shunts. This combined approach may improve surgical outcomes and patient safety by identifying patients at increased risk of perioperative neurological events due to CoW anomalies.
RESUMO
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Assuntos
Prebióticos , Probióticos , Humanos , Eixo Encéfalo-Intestino , Encéfalo , CogniçãoRESUMO
INTRODUCTION: The prevalence of heart failure with preserved ejection fraction (HFpEF) is continuously rising and predominantly affects older women often hypertensive and/or obese or diabetic. Indeed, there is evidence on sex differences in the development of HF. Hence, we studied cardiovascular performance dependent on sex and age as well as pathomechanisms on a cellular and molecular level. METHODS: We studied 15-week- and 1-year-old female and male hypertensive transgenic rats carrying the mouse Ren-2 renin gene (TG) and compared them to wild-type (WT) controls at the same age. We tracked blood pressure and cardiac function via echocardiography. After sacrificing the 1-year survivors we studied vascular smooth muscle and endothelial function. Isolated single skinned cardiomyocytes were used to determine passive stiffness and Ca2+-dependent force. In addition, Western blots were applied to analyse the phosphorylation status of sarcomeric regulatory proteins, titin and of protein kinases AMPK, PKG, CaMKII as well as their expression. Protein kinase activity assays were used to measure activities of CaMKII, PKG and angiotensin-converting enzyme (ACE). RESULTS: TG male rats showed significantly higher mortality at 1 year than females or WT male rats. Left ventricular (LV) ejection fraction was specifically reduced in male, but not in female TG rats, while LV diastolic dysfunction was evident in both TG sexes, but LV hypertrophy, increased LV ACE activity, and reduced AMPK activity as evident from AMPK hypophosphorylation were specific to male rats. Sex differences were also observed in vascular and cardiomyocyte function showing different response to acetylcholine and Ca2+-sensitivity of force production, respectively cardiomyocyte functional changes were associated with altered phosphorylation states of cardiac myosin binding protein C and cardiac troponin I phosphorylation in TG males only. Cardiomyocyte passive stiffness was increased in TG animals. On a molecular level titin phosphorylation pattern was altered, though alterations were sex-specific. Thus, also the reduction of PKG expression and activity was more pronounced in TG females. However, cardiomyocyte passive stiffness was restored by PKG and CaMKII treatments in both TG sexes. CONCLUSION: Here we demonstrated divergent sex-specific cardiovascular adaptation to the over-activation of the renin-angiotensin system in the rat. Higher mortality of male TG rats in contrast to female TG rats was observed as well as reduced LV systolic function, whereas females mainly developed HFpEF. Though both sexes developed increased myocardial stiffness to which an impaired titin function contributes to a sex-specific molecular mechanism. The functional derangements of titin are due to a sex-specific divergent regulation of PKG and CaMKII systems.
Assuntos
Insuficiência Cardíaca , Hipertensão , Miócitos Cardíacos , Ratos Transgênicos , Remodelação Ventricular , Animais , Masculino , Feminino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Ratos , Remodelação Ventricular/fisiologia , Fatores Sexuais , Miócitos Cardíacos/metabolismo , Conectina/metabolismo , Modelos Animais de Doenças , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ecocardiografia , Fosforilação , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologiaRESUMO
Impaired cerebrovascular function contributes to the genesis of age-related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n = 21, 33.2±7.0 years) and aged (n = 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n-back) paradigm, oxy- and deoxyhemoglobin concentration changes from the frontal cortex using functional near-infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2-back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p < 0.05). Both impaired NVC and increased FC correlate with age-related decline in accuracy during the 2-back task. These findings suggest that task-related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load.
Assuntos
Disfunção Cognitiva , Acoplamento Neurovascular , Humanos , Idoso , Acoplamento Neurovascular/fisiologia , Encéfalo/fisiologia , Lobo FrontalRESUMO
The Semmelweis Study is a prospective occupational cohort study that seeks to enroll all employees of Semmelweis University (Budapest, Hungary) aged 25 years and older, with a population of 8866 people, 70.5% of whom are women. The study builds on the successful experiences of the Whitehall II study and aims to investigate the complex relationships between lifestyle, environmental, and occupational risk factors, and the development and progression of chronic age-associated diseases. An important goal of the Semmelweis Study is to identify groups of people who are aging unsuccessfully and therefore have an increased risk of developing age-associated diseases. To achieve this, the study takes a multidisciplinary approach, collecting economic, social, psychological, cognitive, health, and biological data. The Semmelweis Study comprises a baseline data collection with open healthcare data linkage, followed by repeated data collection waves every 5 years. Data are collected through computer-assisted self-completed questionnaires, followed by a physical health examination, physiological measurements, and the assessment of biomarkers. This article provides a comprehensive overview of the Semmelweis Study, including its origin, context, objectives, design, relevance, and expected contributions.
Assuntos
Envelhecimento Saudável , Humanos , Feminino , Masculino , Universidades , Estudos de Coortes , Estudos Prospectivos , HungriaRESUMO
Diet has been described as a modifiable risk factor for the development and progression of chronic diseases, and emerging evidence increasingly points to its preventive and therapeutic role in chronic obstructive pulmonary disease (COPD). While the relationship between the underlying disease and diet is natural in conditions such as metabolic disorders, obesity, diabetes, etc., the direct effect is not so evident in chronic obstructive pulmonary disease. Poor diet quality and the development of nutrient deficiencies in respiratory diseases, including COPD, can be associated with disease-specific factors such as the exacerbation of respiratory symptoms. These symptoms can be improved by dietary interventions, leading to positive changes in the pathogenesis of the disease and the quality of life of patients. Therefore, our aim was to review the latest randomized controlled trials (RCTs) of dietary interventions in chronic respiratory patients and describe their effects on respiratory function, physical activity, systemic inflammatory parameters, and quality of life. We conducted a literature search on dietary interventions for COPD patients in the PubMed, ClinicalTrials.gov, and Cochrane Central Register of Controlled Trials (CENTRAL) databases, focusing on publications from 1 July 2018 to 1 July 2023. We used specific keywords and MESH terms, focusing on RCTs. A total of 26 articles and 1811 COPD patients were included in this review. On the basis of our findings, dietary interventions, in particular components of the Mediterranean diet such as protein, omega-3 polyunsaturated fatty acids, and vegetables, appear to have beneficial effects in patients with chronic respiratory diseases, and their application is beneficial. However, long-term follow-up studies are still needed to examine the effects of dietary interventions in this patient population.
Assuntos
Dieta Mediterrânea , Doença Pulmonar Obstrutiva Crônica , Humanos , Qualidade de Vida , Verduras , Exercício FísicoRESUMO
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Assuntos
Antioxidantes , Vitaminas , Humanos , Antioxidantes/farmacologia , Qualidade de Vida , Suplementos Nutricionais , Minerais , Vitamina A/farmacologia , Cognição , Vitamina K/farmacologia , Envelhecimento , Estudos Observacionais como AssuntoRESUMO
Age represents a major risk factor in heart failure (HF). However, the mechanisms linking ageing and HF are not clear. We aimed to identify the functional, morphological and transcriptomic changes that could be attributed to cardiac ageing in a model of slowly progressing HF in Tgαq*44 mice in reference to the cardiac ageing process in FVB mice. In FVB mice, ageing resulted in the impairment of diastolic cardiac function and in basal coronary flow (CF), perivascular and interstitial fibrosis without changes in the cardiac activity of angiotensin-converting enzyme (ACE) or aldosterone plasma concentration. In Tgαq*44 mice, HF progression was featured by the impairment of systolic and diastolic cardiac function and in basal CF that was associated with a distinct rearrangement of the capillary architecture, pronounced perivascular and interstitial fibrosis, progressive activation of cardiac ACE and systemic angiotensin-aldosterone-dependent pathways. Interestingly, cardiac ageing genes and processes were represented in Tgαq*44 mice not only in late but also in early phases of HF, as evidenced by cardiac transcriptome analysis. Thirty-four genes and 8 biological processes, identified as being ageing related, occurred early and persisted along HF progression in Tgαq*44 mice and were mostly associated with extracellular matrix remodelling and fibrosis compatible with perivascular fibrosis resulting in coronary microvascular dysfunction (CMD) in Tgαq*44 mice. In conclusion, accelerated and persistent cardiac ageing contributes to the pathophysiology of chronic HF in Tgαq*44 mice. In particular, prominent perivascular fibrosis of microcirculation resulting in CMD represents an accelerated cardiac ageing phenotype that requires targeted treatment in chronic HF.
Assuntos
Aldosterona , Insuficiência Cardíaca , Camundongos , Animais , Camundongos Transgênicos , Insuficiência Cardíaca/metabolismo , Doença Crônica , Camundongos Endogâmicos , Envelhecimento , Angiotensinas , FibroseRESUMO
Currently, an increasing amount of evidence supports the notion that vitamins C, D and E, carotenoids, and omega-3 fatty acids may protect against the progression of chronic respiratory diseases. Although chronic obstructive pulmonary disease (COPD) primarily affects the lung, it is often accompanied by extrapulmonary manifestations such as weight loss and malnutrition, skeletal muscle dysfunction, and an excess of harmful oxidants, which can lead to a decline in quality of life and possible death. Recently, the role of various vitamins, minerals, and antioxidants in mitigating the effects of environmental pollution and smoking has received significant attention. Therefore, this review evaluates the most relevant and up-to-date evidence on this topic. We conducted a literature review between 15 May 2018 and 15 May 2023, using the electronic database PubMed. Our search keywords included COPD, chronic obstructive pulmonary disease, FEV1, supplementation: vitamin A, vitamin D, vitamin E, vitamin C, vitamin B, omega-3, minerals, antioxidants, specific nutrient supplementations, clinical trials, and randomized controlled trials (RCTs). We focused on studies that measured the serum levels of vitamins, as these are a more objective measure than patient self-reports. Our findings suggest that the role of appropriate dietary supplements needs to be reconsidered for individuals who are predisposed to or at risk of these conditions.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Complexo Vitamínico B , Humanos , Antioxidantes/uso terapêutico , Vitamina A/uso terapêutico , Suplementos Nutricionais , Minerais/uso terapêutico , Ácido Ascórbico/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Complexo Vitamínico B/uso terapêutico , Vitamina K/uso terapêuticoRESUMO
Unhealthy vascular aging promotes atherogenesis, which may lead to significant internal carotid artery stenosis (CAS) in 5 to 7.5% of older adults. The pathogenic factors that promote accelerated vascular aging and CAS also affect the downstream portion of the cerebral microcirculation in these patients. Primary treatments of significant CAS are eversion endarterectomy or endarterectomy with patch plasty. Factors that determine adequate hemodynamic compensation and thereby the clinical consequences of CAS as well as medical and surgical complications of carotid reconstruction surgery likely involve the anatomy of the circle of Willis (CoW), the magnitude of compensatory inter-hemispheric blood flow, and the effectiveness of cerebral microcirculatory blood flow autoregulation. This study aimed to test two hypotheses based on this theory. First, we hypothesized that patients with symptomatic and asymptomatic CAS would exhibit differences in autoregulatory function and inter-hemispheric blood flow. Second, we predicted that anatomically compromised CoW would associate with impaired inter-hemispheric blood flow compensation. We enrolled older adults with symptomatic or asymptomatic internal CAS (>70% NASCET criteria; n = 46) and assessed CoW integrity by CT angiography. We evaluated transient hyperemic responses in the middle cerebral arteries (MCA) after common carotid artery compression (CCC; 10 s) by transcranial Doppler sonography (TCD). We compared parameters reflecting autoregulatory function (e.g., transient hyperemic response ratio [THRR], return to baseline time [RTB], changes of vascular resistance) and inter-hemispheric blood flow (residual blood flow velocity). Our findings revealed that CAS was associated with impaired cerebral vascular reactivity. However, we did not observe significant differences in autoregulatory function or inter-hemispheric blood flow between patients with symptomatic and asymptomatic CAS. Moreover, anatomically compromised CoW did not significantly affect these parameters. Notably, we observed an inverse correlation between RTB and THRR, and 49% of CAS patients exhibited a delayed THRR, which associated with decreased inter-hemispheric blood flow. Future studies should investigate how TCD-based evaluation of autoregulatory function and inter-hemispheric blood flow can be used to optimize surgical techniques and patient selection for internal carotid artery revascularization.
Assuntos
Estenose das Carótidas , Hiperemia , Humanos , Idoso , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Ultrassonografia Doppler Transcraniana , Microcirculação , Artérias Carótidas , Artéria Carótida Primitiva , HemodinâmicaRESUMO
Chemotherapy-induced cognitive impairment ("chemobrain") is a frequent side-effect in cancer survivors treated with paclitaxel (PTX). The mechanisms responsible for PTX-induced cognitive impairment remain obscure, and there are no effective treatments or prevention strategies. Here, we test the hypothesis that PTX induces endothelial senescence, which impairs microvascular function and contributes to the genesis of cognitive decline. We treated transgenic p16-3MR mice, which allows the detection and selective elimination of senescent cells, with PTX (5 mg/kg/day, 2 cycles; 5 days/cycle). PTX-treated and control mice were tested for spatial memory performance, neurovascular coupling (NVC) responses (whisker-stimulation-induced increases in cerebral blood flow), microvascular density, blood-brain barrier (BBB) permeability and the presence of senescent endothelial cells (by flow cytometry and single-cell transcriptomics) at 6 months post-treatment. PTX induced senescence in endothelial cells, which associated with microvascular rarefaction, NVC dysfunction, BBB disruption, neuroinflammation, and impaired performance on cognitive tasks. To establish a causal relationship between PTX-induced senescence and impaired microvascular functions, senescent cells were depleted from PTX-treated animals (at 3 months post-treatment) by genetic (ganciclovir) or pharmacological (treatment with the senolytic drug ABT263/Navitoclax) means. In PTX treated mice, both treatments effectively eliminated senescent endothelial cells, rescued endothelium-mediated NVC responses and BBB integrity, increased capillarization and improved cognitive performance. Our findings suggest that senolytic treatments can be a promising strategy for preventing chemotherapy-induced cognitive impairment.