Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(38): 15917-25, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23949088

RESUMO

Co nanoparticles were produced and characterized on protonated titanate nanowires. Co deposits were obtained after low-temperature decomposition of Co2(CO)8 on titanate nanostructures. The carbonylation was carried out by vapor-phase adsorption in a fluidized bed reactor and the decarbonylation processes were followed by FT-IR spectroscopy and microbalance combined with temperature programmed reaction mass spectrometry. The band gap of Co-decorated titanate nanostructures determined by UV-VIS diffuse reflectance spectroscopy decreased sharply from 3.14 eV to 2.41 eV with increasing Co content up to 2 wt%. The Co-decorated titanate morphology was characterized by high-resolution transmission electron microscopy (HRTEM) and electron diffraction (ED). The chemical environment of Co deposition was studied by photoelectron spectroscopy (XPS). A certain amount of cobalt underwent an ion exchange process. Higher cobalt loadings led to the formation of nanosized-dispersed particles complexed to oxygen vacancies. The average sizes were found to be mostly between 2 and 6 nm. This size distribution and the measured band gap could be favorable regimes for some important low-temperature thermal- and photo-induced catalytic reactions.


Assuntos
Cobalto/química , Nanofios/química , Titânio/química , Troca Iônica , Íons/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA