Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118572, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421720

RESUMO

Intercropping can favour the yield of the main crop. However, because of the potential competition among woody crops, this system is rarely used by farmers. To increase knowledge about the intercropping system, we have explored three different combinations of alley cropping in rainfed olive groves compared to conventional management (CP): (i) Crocus sativus (D-S); (ii) Vicia sativa/Avena sativa in annual rotation (D-O); and (iii) Lavandula x intermedia (D-L). Different soil chemical properties were analyzed to evaluate the effects of alley cropping, while 16S rRNA amplification and enzymatic activities were determined to study the changes that occurred in soil microbial communities and activity. In addition, the influence of intercropping on the potential functionality of the soil microbial community was measured. Data revealed that the intercropping systems highly affected the microbial community and soil properties. The D-S cropping system increased soil total organic carbon and total nitrogen that were correlated with the bacterial community, indicating that both parameters were the main drivers shaping the structure of the bacterial community. The D-S soil cropping system had significantly higher relative abundances of the phyla Bacteroidetes, Proteobacteria, and Patescibacteria compared to the other systems and the genera Adhaeribacter, Arthrobacter, Rubellimicrobium, and Ramlibacter, related to C and N functions. D-S soil was also related to the highest relative abundances of Pseudoarthrobacter and Haliangium, associated with the plant growth-promoting effect, antifungal activity, and a potential P solubilizer. A potentially increase of C fixation and N fixation in soils was also observed in the D-S cropping system. These positive changes were related to the cessation of tillage and the development of a spontaneous cover crop, which increased soil protection. Thus, management practices that contribute to increasing soil cover should be encouraged to improve soil functionality.


Assuntos
Crocus , Olea , Solo/química , Olea/genética , Crocus/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Produtos Agrícolas , Microbiologia do Solo
2.
Sci Total Environ ; 903: 166225, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586524

RESUMO

Snow-farming is one of the adaptive strategies used to face the snow deficit in ski resorts. We studied the impact of a shifting snow-farming technique on a pasture slope in Adelboden, Switzerland. Specifically, we compared plots covered by a compressed snow pile for 1.5, 2.5 or 3.5 years, which then recovered from the snow cover for three, two or one vegetation seasons, respectively, with control plots situated around the snow pile. In plots with >1.5 years of compressed snow pile, plant mortality was high, recovery of vegetation was very slow, and few plant species recolonized the bare surface. Soil biological activity decreased persistently under prolonged snow cover, as indicated by reduced soil respiration. The prolonged absence of fresh plant litter and root exudates led to carbon (C) limitation for soil microbial respiration, which resulted in a significant decrease in the ratio of total organic carbon to total nitrogen (TOC/TN) under the snow pile. Microbial C, nitrogen (N) and phosphorus (P) immobilization decreased, while dissolved N concentration increased with compressed snow cover. Longer snow cover and a subsequent shorter recovery period led to higher microbial C/P and N/P but lower microbial C/N. Nitrate and ammonium were released massively once the biological activity resumed after snow clearance and soil aeration. The soil microbial community composition persistently shifted towards oxygen-limited microbes with prolonged compressed snow cover. This shift reflected declines in the abundance of sensitive microorganisms, such as plant-associated symbionts, due to plant mortality or root die-off. In parallel, resistant taxa that benefit from environmental changes increased, including facultative anaerobic bacteria (Bacteroidota, Chloroflexota), obligate anaerobes (Euryarchaeota), and saprophytic plant degraders. We recommend keeping snow piles in the same spot year after year to minimize the area of the impacted soil surface and plan from the beginning soil and ecosystem restoration measures.

3.
Polymers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616553

RESUMO

Polyurethane (PU) is a widely used polymer with a highly complex recycling process due to its chemical structure. Eliminating polyurethane is limited to incineration or accumulation in landfills. Biodegradation by enzymes and microorganisms has been studied for decades as an effective method of biological decomposition. In this study, Tenebrio molitor larvae (T. molitor) were fed polyurethane foam. They degraded the polymer by 35% in 17 days, resulting in a 14% weight loss in the mealworms. Changes in the T. molitor gut bacterial community and diversity were observed, which may be due to the colonization of the species associated with PU degradation. The physical and structural biodegradation of the PU, as achieved by T. molitor, was observed and compared to the characteristics of the original PU (PU-virgin) using Fourier Transform InfraRed spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), and Scanning Electron Microphotography (SEM).

4.
Sci Total Environ ; 805: 150330, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818753

RESUMO

Composting is an advantageous and efficient process for recycling organic waste and producing organic fertilizers, and many kinds of microorganisms are involved in obtaining quality compost with suppressive activity against soil-borne pathogens. The aim of this work was to evaluate the main differences in the effects of three composting piles on the whole bacterial and fungal communities of baby-leaf lettuce crops and to determine the specific communities by high-throughput sequencing related to suppressiveness against the soil-borne plant pathogen Pythium irregulare- (P. irregulare). Compost pile A was composed of 47% vineyard pruning waste, 34% tomato waste and 19% leek waste; pile B was composed of 54% vineyard pruning waste and 46% tomato waste; and pile C was composed of 42% vineyard pruning waste, 25% tomato waste and 33% olive mill cake. The temperature and the chemical properties of the piles were monitored throughout the composting process. In addition, the potential suppressive capacity of the three composts (C_A, C_B and C_C) against P. irregulare in baby-leaf lettuce was assessed. We found that the bacterial community changed according to the composting phases and composting pile and was sensitive to chemical changes throughout the composting process. The fungal community, on the other hand, did not change between the composting piles and proved to be less influenced by chemical properties, but it did change, principally, according to the composting phases. All composts obtained were considered stable and mature, while compost C_C showed higher maturity than composts C_A and C_B. During composting, the three piles contained a greater relative abundance of Bacterioidetes, Proteobacterias and Actinobacterias related to the suppression of soil-borne pathogens such as Pythium irregulare. Composts C_A and C_B, however, showed higher suppressiveness against P. irregulare than compost C_C. Deeper study showed that this observed suppressiveness was favored by a higher abundance of genera that have been described as potential suppressive against P. irregulare, such as Aspergillus, Penicillium, Truepera and Luteimonas.


Assuntos
Compostagem , Micobioma , Produtos Agrícolas , Fertilizantes , Resíduos Industriais/análise , Solo
5.
Front Microbiol ; 13: 1004593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419434

RESUMO

The high use of pesticides, herbicides, and unsustainable farming practices resulted in losses of soil quality. Sustainable farming practices such as intercropping could be a good alternative to traditional monocrop, especially using legumes such as cowpea (Vigna unguiculata L. Walp). In this study, different melon and cowpea intercropping patterns (melon mixed with cowpea in the same row (MC1); alternating one melon row and one cowpea row (MC2); alternating two melon rows and one cowpea row (MC3)) were assayed to study the intercropping effect on soil bacterial community through 16S rRNA region in a 3-year experiment. The results indicated that intercropping showed high content of total organic carbon, total nitrogen and ammonium, melon yield, and bacterial diversity as well as higher levels of beneficial soil microorganisms such a Pseudomonas, Aeromicrobium, Niastella, or Sphingomonas which can promote plant growth and plant defense against pathogens. Furthermore, intercropping showed a higher rare taxa diversity in two (MC1 and MC2) out of the three intercropping systems. In addition, N-cycling genes such as nirB, nosZ, and amoA were more abundant in MC1 and MC2 whereas the narG predicted gene was far more abundant in the intercropping systems than in the monocrop at the end of the 3-year experiment. This research fills a gap in knowledge about the importance of soil bacteria in an intercropping melon/cowpea pattern, showing the benefits to yield and soil quality with a decrease in N fertilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA