Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(6): 1835-1847, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315193

RESUMO

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the family of statins have been suggested as therapeutic options in various tumors. Atorvastatin is a statin with the potential to cross the blood-brain barrier; however, the concentrations necessary for a cytotoxic effect against cancer cells exceed the concentrations achievable via oral administration, which made the development of a novel atorvastatin formulation necessary. We characterized the drug loading and basic physicochemical characteristics of micellar atorvastatin formulations and tested their cytotoxicity against a panel of different glioblastoma cell lines. In addition, activity against tumor spheroids formed from mouse glioma and mouse cancer stem cells, respectively, was evaluated. Our results show good activity of atorvastatin against all tested cell lines. Interestingly, in the three-dimensional (3D) models, growth inhibition was more pronounced for the micellar formulation compared to free atorvastatin. Finally, atorvastatin penetration across a blood-brain barrier model obtained from human induced-pluripotent stem cells was evaluated. Our results suggest that the presented micelles may enable much higher serum concentrations than possible by oral administration; however, if transport across the blood-brain barrier is sufficient to reach the therapeutic atorvastatin concentration for the treatment of glioblastoma via intravenous administration remains unclear.


Assuntos
Antineoplásicos/farmacologia , Atorvastatina/química , Atorvastatina/farmacologia , Glioblastoma/tratamento farmacológico , Antineoplásicos/química , Barreira Hematoencefálica , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Difusão Dinâmica da Luz , Glioblastoma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Micelas , Nanomedicina/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxazóis/química
2.
Brain Sci ; 13(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37508911

RESUMO

Phoenixin-14 is a recently discovered peptide regulating appetite. Interestingly, it is expressed in the gastrointestinal tract; however, its supposed receptor, GPR173, is predominantly found in hypothalamic areas. To date, it is unknown how peripherally secreted phoenixin-14 is able to reach its centrally located receptor. To investigate whether phoenixin is able to pass the blood-brain barrier, we used an in vitro mono-culture blood-brain barrier (BBB) model consisting of brain capillary-like endothelial cells derived from human induced-pluripotent stem cells (hiPSC-BCECs). The passage of 1 nMol and 10 nMol of phoenixin-14 via the mono-culture was measured after 30, 60, 90, 120, 150, 180, 210, and 240 min using a commercial ELISA kit. The permeability coefficients (PC) of 1 nMol and 10 nMol phoenixin-14 were 0.021 ± 0.003 and 0.044 ± 0.013 µm/min, respectively. In comparison with the PC of solutes known to cross the BBB in vivo, those of phoenixin-14 in both concentrations are very low. Here, we show that phoenixin-14 alone is not able to cross the BBB, suggesting that the effects of peripherally secreted phoenixin-14 depend on a co-transport mechanism at the BBB in vivo. The mechanisms responsible for phoenixin-14's orexigenic property along the gut-brain axis warrant further research.

3.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35063125

RESUMO

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Assuntos
Barreira Hematoencefálica/virologia , Sistema Nervoso Central/virologia , SARS-CoV-2/fisiologia , Internalização do Vírus , Anticorpos/farmacologia , Benzamidinas/farmacologia , COVID-19/patologia , COVID-19/virologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Guanidinas/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos
4.
Curr Protoc Stem Cell Biol ; 47(1): e62, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30261129

RESUMO

Human blood-brain barrier (BBB) in vitro models pose a promising tool in drug development and understanding of mechanistic regulations during health and disease. Human-induced pluripotent stem cells (hiPS cells) represent an unlimited cell source to generate functional cells of the neurovascular unit (NVU), independent of variations or limitations during isolation and in vitro cultivation. This unit describes the standardized 2-D differentiation of adherent hiPS cells into BBB endothelial cells and neuronal stem cells (NSCs). Both cell types are combined with primary astrocytes and pericytes to develop complex, physiological BBB in vitro models. The endothelial cells in the apical compartment of the transwell models are separated from the basolateral seeded co-culture mixture by a synthetic membrane, simplifying analyses. The barrier integrity and functionality of the endothelium is improved by the specific mixture of NVU niche cells, determined here by decrease in the paracellular permeability of sodium-fluorescein and transendothelial electrical resistance (TEER) measurement. © 2018 by John Wiley & Sons, Inc.


Assuntos
Barreira Hematoencefálica , Técnicas de Cocultura , Células-Tronco Pluripotentes Induzidas/citologia , Células Cultivadas , Células Endoteliais/citologia , Humanos , Modelos Biológicos , Neurônios/citologia
5.
Methods Mol Biol ; 1601: 111-122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28470522

RESUMO

Nanoparticles (NPs) in biotechnology hold great promise for revolutionizing medical treatments and therapies. In order to bring NPs into clinical application there is a number of preclinical in vitro and in vivo tests, which have to be applied before. The initial in vitro evaluation includes a detailed physicochemical characterization as well as biocompatibility tests, among others. For determination of biocompatibility at the cellular level, the correct choice of the in vitro assay as well as NP pretreatment is absolutely essential. There are a variety of assay technologies available that use standard plate readers to measure metabolic markers to estimate the number of viable cells in culture. Each cell viability assay has its own set of advantages and disadvantages. Regardless of the assay method chosen, the major factors critical for reproducibility and success include: (1) choosing the right assay after comparing optical NP properties with the read-out method of the assay, (2) verifying colloidal stability of NPs in cell culture media, (3) preparing a sterile and stable NP dispersion in cell culture media used in the assay, (4) using a tightly controlled and consistent cell model allowing appropriate characterization of NPs. This chapter will briefly summarize these different critical points, which can occur during biocompatibility screening applications of NPs.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais/métodos , Nanopartículas/química , Nanopartículas/toxicidade , Células CACO-2 , Coloides/química , Meios de Cultura/química , Espectroscopia Dielétrica , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula
6.
Beilstein J Nanotechnol ; 8: 1484-1493, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900602

RESUMO

New multifunctional nanoparticles (NPs) that can be used as contrast agents (CA) in different imaging techniques, such as photoluminescence (PL) microscopy and magnetic resonance imaging (MRI), open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF2:(Tb3+,Gd3+) NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5-10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd3+ ions on the surface, the NPs reduce the MR T1 relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg-1·s-1. Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL-1 was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF2:(Tb3+,Gd3+) NPs are suitable for medical imaging.

7.
Stem Cell Reports ; 8(4): 894-906, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28344002

RESUMO

In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm2 and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies.


Assuntos
Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Técnicas de Cocultura/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Barreira Hematoencefálica/ultraestrutura , Permeabilidade Capilar , Células Cultivadas , Feto/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/ultraestrutura , Acoplamento Neurovascular , Farmacocinética , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA