Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542258

RESUMO

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Reparo do DNA , Reparo do DNA por Junção de Extremidades , Análise de Sequência de RNA , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569869

RESUMO

We assessed the effects of conventional and ultra-high dose rate (UHDR) electron irradiation on behavioral and cognitive performance one month following exposure and assessed whether these effects were associated with alterations in the number of immune cells in the hippocampus using flow cytometry. Two-month-old female and male C57BL/6J mice received whole-brain conventional or UHDR irradiation. UHDR mice were irradiated with 9 MeV electrons, delivered by the Linac-based/modified beam control. The mice were irradiated or sham-irradiated at Dartmouth, the following week shipped to OHSU, and behaviorally and cognitively tested between 27 and 41 days after exposure. Conventional- and UHDR-irradiated mice showed impaired novel object recognition. During fear learning, conventional- and UHDR-irradiated mice moved less during the inter-stimulus interval (ISI) and UHDR-irradiated mice also moved less during the baseline period (prior to the first tone). In irradiated mice, reduced activity levels were also seen in the home cage: conventional- and UHDR-irradiated mice moved less during the light period and UHDR-irradiated mice moved less during the dark period. Following behavioral and cognitive testing, infiltrating immune cells in the hippocampus were analyzed by flow cytometry. The percentage of Ly6G+ CD45+ cells in the hippocampus was lower in conventional- and UHDR-irradiated than sham-irradiated mice, suggesting that neutrophils might be particularly sensitive to radiation. The percentage of Ly6G+ CD45+ cells in the hippocampus was positively correlated with the time spent exploring the novel object in the object recognition test. Under the experimental conditions used, cognitive injury was comparable in conventional and UHDR mice. However, the percentage of CD45+ CD11b+ Ly6+ and CD45+ CD11b+ Ly6G- cells in the hippocampus cells in the hippocampus was altered in conventional- but not UHDR-irradiated mice and the reduced percentage of Ly6G+ CD45+ cells in the hippocampus might mediate some of the detrimental radiation-induced cognitive effects.


Assuntos
Hipocampo , Lesões por Radiação , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hipocampo/efeitos da radiação , Encéfalo/efeitos da radiação , Aprendizagem , Cognição/efeitos da radiação
3.
Nucl Instrum Methods Phys Res B ; 534: 26-34, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644589

RESUMO

Proton interactions with 16O or 12C nuclei are frequent nuclear interaction leading to secondary radiation in tissues for space radiation and cancer therapy with protons or ion beams. The fragmentation of these ions by protons produces a large number of heavy ion (A>4) target or projectile fragments often with high ionization density. Here we develop an analytical model of energy dependent proton-16O and proton-12C cross sections for isotopic nuclei production. Using experimental data and a 2nd order optical model an accurate formula for the absorption cross section from <10 MeV/u to >10 GeV/u is obtained. The energy dependence of the elemental and isotopic cross sections is modeled as multiplicities scaled to absorption cross section with average isotopic fractions estimated from experimental data. We show that this approach results in accurate analytic formulae for isotopic fragmentation cross sections over the full energy range in hadron therapy and space radiation protection studies.

4.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457139

RESUMO

The biological effects of high linear energy transfer (LET) radiation show both a qualitative and quantitative difference when compared to low-LET radiation. However, models used to estimate risks ignore qualitative differences and involve extensive use of gamma-ray data, including low-LET radiation epidemiology, quality factors (QF), and dose and dose-rate effectiveness factors (DDREF). We consider a risk prediction that avoids gamma-ray data by formulating a track structure model of excess relative risk (ERR) with parameters estimated from animal studies using high-LET radiation. The ERR model is applied with U.S. population cancer data to predict lifetime risks to astronauts. Results for male liver and female breast cancer risk show that the ERR model agrees fairly well with estimates of a QF model on non-targeted effects (NTE) and is about 2-fold higher than the QF model that ignores NTE. For male or female lung cancer risk, the ERR model predicts about a 3-fold and more than 7-fold lower risk compared to the QF models with or without NTE, respectively. We suggest a relative risk approach coupled with improved models of tissue-specific cancers should be pursued to reduce uncertainties in space radiation risk projections. This approach would avoid low-LET uncertainties, while including qualitive effects specific to high-LET radiation.


Assuntos
Radiação Cósmica , Neoplasias Induzidas por Radiação , Voo Espacial , Animais , Astronautas , Radiação Cósmica/efeitos adversos , Feminino , Humanos , Transferência Linear de Energia , Masculino , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Risco
5.
Nucl Instrum Methods Phys Res B ; 502: 136-141, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898771

RESUMO

Light ion breakup cross sections are important for studies of cosmic ray interactions in the inter-stellar medium or radiation protection considerations of energy deposition in shielding and tissues. Abrasion cross sections for heavy ion reactions have been modeled using the Glauber model in the large mass limit or Eikonal form of the optical potential model. Here we formulate an abrasion model for 4He fragmentation on protons using the Glauber model avoiding the large mass limit and include a model for final state interactions. Calculations of energy dependent total, absorption, elastic and breakup cross sections for 4He into 3He or 3H with proton targets are shown to be in good agreement with experiments for energies from 100 to 100,000 MeV/u. The Glauber model for light nuclei with and without a large mass limit approximation is shown to be in fair agreement above 300 MeV/u, however important differences occur at lower energies.

6.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059363

RESUMO

We propose a comprehensive mathematical model to study the dynamics of ionizing radiation induced Ataxia-telangiectasia mutated (ATM) activation that consists of ATM activation through dual mechanisms: the initiative activation pathway triggered by the DNA damage-induced local chromatin relaxation and the primary activation pathway consisting of a self-activation loop by interplay with chromatin relaxation. The model is expressed as a series of biochemical reactions, governed by a system of differential equations and analyzed by dynamical systems techniques. Radiation induced double strand breaks (DSBs) cause rapid local chromatin relaxation, which is independent of ATM but initiates ATM activation at damage sites. Key to the model description is how chromatin relaxation follows when active ATM phosphorylates KAP-1, which subsequently spreads throughout the chromatin and induces global chromatin relaxation. Additionally, the model describes how oxidative stress activation of ATM triggers a self-activation loop in which PP2A and ATF2 are released so that ATM can undergo autophosphorylation and acetylation for full activation in relaxed chromatin. In contrast, oxidative stress alone can partially activate ATM because phosphorylated ATM remains as a dimer. The model leads to predictions on ATM mediated responses to DSBs, oxidative stress, or both that can be tested by experiments.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/efeitos da radiação , Ataxia Telangiectasia/metabolismo , Cromatina/metabolismo , Cromatina/efeitos da radiação , Modelos Teóricos , Radiação Ionizante , Fator 2 Ativador da Transcrição/metabolismo , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Bleomicina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Humanos , Estresse Oxidativo , Fosforilação , Transdução de Sinais/fisiologia , Biologia de Sistemas , Proteína 28 com Motivo Tripartido/metabolismo
7.
Int J Mol Sci ; 20(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487843

RESUMO

Previously, we investigated the dose response for chromosomal aberration (CA) for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) particles, and showed that the dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Our results suggested that the simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. Nitric oxide (NO) has been reported as a candidate for intercellular signaling for NTE in many studies. In order to estimate the contribution of NTE components in induced CA, we measured CA with and without an NO scavenger in normal skin fibroblasts cells after exposure to 600 MeV/u and 1 GeV/u 56Fe ions, less than one direct particle traversal per cell nucleus. Yields of CA were significantly lower in fibroblasts exposed to the NO scavenger compared to controls, suggesting involvement of NO in cell signaling for induction of CA. Media transferred from irradiated cells induced CA in non-irradiated cells, and this effect was abrogated with NO scavengers. Our results strongly support the importance of NTE contributions in the formation of CA at low-particle fluence in fibroblasts.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Íons Pesados , Óxido Nítrico/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Transdução de Sinais
9.
PLoS Comput Biol ; 11(8): e1004428, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26252394

RESUMO

In this work, a stochastic computational model of microscopic energy deposition events is used to study for the first time damage to irradiated neuronal cells of the mouse hippocampus. An extensive library of radiation tracks for different particle types is created to score energy deposition in small voxels and volume segments describing a neuron's morphology that later are sampled for given particle fluence or dose. Methods included the construction of in silico mouse hippocampal granule cells from neuromorpho.org with spine and filopodia segments stochastically distributed along the dendritic branches. The model is tested with high-energy (56)Fe, (12)C, and (1)H particles and electrons. Results indicate that the tree-like structure of the neuronal morphology and the microscopic dose deposition of distinct particles may lead to different outcomes when cellular injury is assessed, leading to differences in structural damage for the same absorbed dose. The significance of the microscopic dose in neuron components is to introduce specific local and global modes of cellular injury that likely contribute to spine, filopodia, and dendrite pruning, impacting cognition and possibly the collapse of the neuron. Results show that the heterogeneity of heavy particle tracks at low doses, compared to the more uniform dose distribution of electrons, juxtaposed with neuron morphology make it necessary to model the spatial dose painting for specific neuronal components. Going forward, this work can directly support the development of biophysical models of the modifications of spine and dendritic morphology observed after low dose charged particle irradiation by providing accurate descriptions of the underlying physical insults to complex neuron structures at the nano-meter scale.


Assuntos
Biologia Computacional/métodos , Modelos Neurológicos , Neurônios/efeitos da radiação , Radiometria/métodos , Animais , Simulação por Computador , Dendritos/efeitos da radiação , Giro Denteado/citologia , Camundongos , Método de Monte Carlo , Pseudópodes/efeitos da radiação , Radioquímica
10.
J Biol Chem ; 289(44): 30635-30644, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25210033

RESUMO

High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Animais , Morte Celular , Linhagem Celular , Fragmentação do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Transferência Linear de Energia , Proteína Homóloga a MRE11 , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Regulação para Cima , Raios X
11.
Nucleic Acids Res ; 41(2): 933-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23221633

RESUMO

Cellular damage from ionizing radiation (IR) is in part due to DNA damage and reactive oxygen species, which activate DNA damage response (DDR) and cytokine signaling pathways, including the ataxia telangiectasia mutated (ATM) and transforming growth factor (TGF)ß/Smad pathways. Using classic double-strand breaks (DSBs) markers, we studied the roles of Smad proteins in DDR and the crosstalk between TGFß and ATM pathways. We observed co-localization of phospho-Smad2 (pSmad2) and Smad7 with DSB repair proteins following low and high linear energy transfer (LET) radiation in human fibroblasts and epithelial cells. The decays of both foci were similar to that of γH2AX foci. Irradiation with high LET particles induced pSmad2 and Smad7 foci tracks indicating the particle trajectory through cells. pSmad2 foci were absent in S phase cells, while Smad7 foci were present in all phases of cell cycle. pSmad2 (but not Smad7) foci were completely abolished when ATM was depleted or inactivated. In contrast, a TGFß receptor 1 (TGFßR1) inhibitor abrogated Smad7, but not pSmad2 foci at DSBs sites. In summary, we suggest that Smad2 and Smad7 contribute to IR-induced DSB signaling in an ATM or TGFßR1-dependent manner, respectively.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Smad2/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Fator 2 Ativador da Transcrição , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Histonas/metabolismo , Humanos , Cinética , Transferência Linear de Energia , Fosforilação , Radiação Ionizante , Proteína Smad2/análise , Proteína Smad3/análise , Proteína Smad3/metabolismo , Proteína Smad7/análise
12.
Life Sci Space Res (Amst) ; 40: 166-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245342

RESUMO

Future space travel to the earth's moon or the planet Mars will likely lead to the selection of experienced International Space Station (ISS) or lunar crew persons for subsequent lunar or mars missions. Major concerns for space travel are galactic cosmic ray (GCR) risks of cancer and circulatory diseases. However large uncertainties in risk prediction occur due to the quantitative and qualitative differences in heavy ion microscopic energy deposition leading to differences in biological effects compared to low LET radiation. In addition, there are sparse radiobiology data and absence of epidemiology data for heavy ions and other high LET radiation. Non-targeted effects (NTEs) are found in radiobiology studies to increase the biological effectiveness of high LET radiation at low dose for cancer related endpoints. In this paper the most recent version of the NASA Space Cancer Risk model (NSCR-2022) is used to predict mission risks while considering NTEs in solid cancer risk predictions. I discuss predictions of space radiation risks of cancer and circulatory disease mortality for US Whites and US Asian-Pacific Islander (API) populations for 6-month ISS, 80-day lunar missions, and combined ISS-lunar mission. Model predictions suggest NTE increase cancer risks by about ∼2.3 fold over a model that ignores NTEs. US API are predicted to have a lower cancer risks of about 30% compared to US Whites. Cancer risks are slightly less than additive for multiple missions, which is due to the decease of risk with age of exposure and the increased competition with background risks as radiation risks increase. The inclusion of circulatory risks increases mortality estimates about 25% and 37% for females and males, respectively in the model ignoring NTEs, and 20% and 30% when NTEs are assumed to modify solid cancer risk. The predictions made here for combined ISS and lunar missions suggest risks are within risk limit recommendations by the National Council on Radiation Protection and Measurements (NCRP) for such missions.


Assuntos
Radiação Cósmica , Neoplasias Induzidas por Radiação , Voo Espacial , Masculino , Feminino , Humanos , Astronautas , Lua , Radiação Cósmica/efeitos adversos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Doses de Radiação
13.
Life Sci Space Res (Amst) ; 40: 72-80, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245350

RESUMO

Missions to the Earth's moon are of scientific and societal interest, however pose the problem of risks of late effects for returning crew persons, most importantly cancer and circulatory diseases. In this paper, we discuss NSCR-2022 model risk estimates for lunar missions for US racial and ethnic groups comparing never-smokers (NS) to US averages for each group and sex. We show that differences within groups between men and women are reduced for NS compared to the average population. Race and ethnic group dependent cancer and circulatory disease risks are reduced by 10% to 40% for NS with the largest decrease for Whites. Circulatory disease risks are changed by less than 10% for NS and in several cases modestly increased due to increased lifespan for NS. Asian-Pacific Islanders (API) and Hispanics NS are at lower risk compared to Whites and Blacks. Differences between groups are narrowed for NS compared to predictions for average populations, however disparities remain especially for Blacks and to a lesser extent Whites compared to API or Hispanic NS groups.


Assuntos
Astronautas , Doenças Cardiovasculares , Etnicidade , Neoplasias , Grupos Raciais , Exposição à Radiação , Feminino , Humanos , Masculino , Lua , Neoplasias/epidemiologia , Fumantes , Estados Unidos , Medição de Risco , Exposição à Radiação/efeitos adversos , Fatores Sexuais , Doenças Cardiovasculares/epidemiologia
14.
Life Sci Space Res (Amst) ; 40: 1-7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245334

RESUMO

In this paper we use the NASA Space Cancer Risk (NSCR version 2022) model to predict cancer and circulatory disease risks using energy spectra representing the largest SPE's observed in the space age. Because tissue dose-rates behind shielding for large SPE's lead to low dose-rates (<0.2 Gy/h) we consider the integrated risk for several historical periods of high solar activity, including July-November, 1960 events and August-October 1989 events along with the February 1956 and August 1972 events. The galactic cosmic ray (GCR) contribution to risks is considered in predictions. Results for these largest historical events show risk of exposure induced death (REID) are mitigated to < 1.2 % with a 95 % confidence interval with passive radiation shielding of 20 g/cm2 aluminum, while larger amounts would support the application of the ALARA principle. Annual GCR risks are predicted to surpass the risks from large SPEs by ∼30 g/cm2 of aluminum shielding.


Assuntos
Radiação Cósmica , Neoplasias , Voo Espacial , Humanos , Atividade Solar , Radiação Cósmica/efeitos adversos , Alumínio , Neoplasias/epidemiologia , Neoplasias/etiologia , Doses de Radiação
15.
Radiat Res ; 201(6): 535-545, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616047

RESUMO

A mathematical model developed by Cucinotta and Smirnova is extended to describe effects of continuous, partial-body irradiation at high doses D and at dose rates N from FLASH to conventional rates on the level of surviving blood lymphocytes in humans and small laboratory animals (mice). Specifically, whereas the applicability of the model is limited to the exposure times shorter than a single cardiac cycle T0, the extended model is capable of describing such effects for the aforementioned and longer exposure times. The extended model is implemented as the algebraic equations. It predicts that the level of surviving blood lymphocytes in humans and mice increases with increasing the dose rate from N= D/T0 to FLASH rates and approaches the upper limiting level of 1-vR, where vR is the fraction of blood volume in the irradiated part of the blood circulatory system. Levels of surviving blood lymphocytes computed at doses from 10 Gy to 40 Gy and at dose rates N, which equal or exceed 40 Gy/s for humans and 400 Gy/s for mice, are nearly indistinguishable from the upper limiting level. In turn, the level of surviving blood lymphocytes in humans and mice decreases with decreasing the dose rate from N= D/T0 to conventional rates and approaches a lower limiting level. This level strongly depends on the dose D (it is smaller at larger values of D) with a slight dependence on the dose rate N. The model with the parameters specified for mice (together with the model of the dynamics of lymphopoietic system in mice after partial-body irradiation) reproduce, on a quantitative level, the experimental data, according to which the concentration of blood lymphocytes measured in mice in one day after continuous, partial-body irradiation at a high dose and conventional dose rate is smaller at the larger value of vR. Additionally, the model predicts at the same high dose (>10 Gy) a faster restoration of the blood lymphocyte population in humans exposed to continuous, partial-body irradiation at a FLASH dose rate compared to a conventional dose rate.


Assuntos
Sobrevivência Celular , Relação Dose-Resposta à Radiação , Linfócitos , Animais , Linfócitos/efeitos da radiação , Camundongos , Humanos , Sobrevivência Celular/efeitos da radiação , Modelos Biológicos , Doses de Radiação
16.
Radiat Res ; 201(6): 546-557, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623828

RESUMO

Mathematical models, which describe effects of partial-body, two- and multiple-pulse irradiation at high total doses D and at average dose rates N from FLASH to conventional rates on the level of surviving blood lymphocytes in humans and mice, have been developed originating in the previously proposed approach. These models predict that levels of surviving blood lymphocytes in humans and mice increase with increasing the dose rate from N=D/TR (TR is the time of the blood flowing into or out of the irradiated segment of the blood circulatory system) to FLASH rates and approach an upper limiting level equal to (1-vR), where vR is the fraction of blood volume in the irradiated segment of the blood circulatory system. Levels of surviving blood lymphocytes computed at total doses D of 10-40 Gy and at average of dose rates N, which are equal to or exceed 40 Gy/s for humans and 400 Gy/s for mice, are nearly indistinguishable from the upper limiting level. These results can be interpreted as the models reproducing the optimal blood lymphocyte sparing in these mammals after such exposures. With decreasing the dose rate from N=D/TR to conventional rates, at multiple-pulse irradiation the levels of surviving blood lymphocytes in humans and mice decrease to lower limiting levels, whereas at two-pulse irradiation they change cyclically and do not fall below their values for the delivery time equal to TR. Additionally, effects of two- and multiple-pulse irradiation of the whole abdomen in mice on the level of surviving blood lymphocytes are simulated within the developed models. Regimens of two- and multiple-pulse irradiation are taken the same as those reported in experiments, where effects of such exposures on the level of surviving crypts in mice were studied. Juxtaposing the modeling results with the experimental data reveals that the level of surviving blood lymphocytes in mice after two- and multiple-pulse irradiation of the abdomen at average dose rates N from FLASH to conventional rates modulates the level of surviving crypts in these animals after such exposures. A hypothesis is proposed to explain this phenomenon.


Assuntos
Sobrevivência Celular , Linfócitos , Linfócitos/efeitos da radiação , Animais , Camundongos , Humanos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Modelos Biológicos , Doses de Radiação
17.
Life Sci Space Res (Amst) ; 41: 166-170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670643

RESUMO

In this paper we recommend an appropriate compensation approach should be established for fatality and disabilities that may occur due to space radiation exposures of government or industry workers. A brief review of compensation approaches for nuclear energy and nuclear weapons development workers in the United States and other countries is described. We then summarize issues in the application of probability of causation calculation and provide examples of probability of causation (PC) calculations for missions to the International Space Station and Earth's moon or for Mars exploration. The main focus of this paper follows with a recommendation of a no-fault approach to compensation with the creation of appropriate insurance policies funded by employers to cover all disabilities or fatality, without requiring proof of causation or restriction to conditions that imply causation. Importantly we propose that the compensation described should be managed by recourse to private insurers.


Assuntos
Voo Espacial , Humanos , Exposição Ocupacional , Radiação Cósmica/efeitos adversos , Estados Unidos , Lesões por Radiação/etiologia , Lesões por Radiação/economia , Exposição à Radiação/efeitos adversos , Compensação e Reparação
18.
Life Sci Space Res (Amst) ; 41: 29-42, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670650

RESUMO

During a human mission to Mars, astronauts would be continuously exposed to galactic cosmic rays (GCR) consisting of high energy protons and heavier ions coming from outside our solar system. Due to their high energy, GCR ions can penetrate spacecraft and space habitat structures, directly reaching human organs. Additionally, they generate secondary particles when interacting with shielding materials and human tissues. Baryon secondaries have been the focus of many previous studies, while meson and lepton secondaries have been considered to a much lesser extent. In this work, we focus on assessing the tissue-specific dose equivalents and the effective dose for males of secondary mesons and leptons for the interplanetary cruise phase and the surface phase on Mars. We also provide the energy distribution of the secondary pions in each human organ since they are dominant compared to other mesons and leptons. For this calculation, the PHITS3.27 Monte Carlo simulation toolkit is used to compute the energy spectra of particles in organs in a realistic human phantom. Based on the simulation data, the dose equivalent has been estimated with radiation quality factors in ICRP Publication 60 and in the latest NASA Space Cancer Risk model (NSCR-2022). The effective dose is then assessed with the tissue weighting factors in ICRP Publication 103 and in the NSCR model, separately. The results indicate that the contribution of secondary mesons and leptons to the total effective dose is 6.1 %, 9.1 %, and 11.3 % with the NSCR model in interplanetary space behind 5, 20, and 50 g/cm2 aluminum shielding, respectively, with similar values using the ICRP model. The outcomes of this work lead to an improved understanding of the potential health risks induced by secondary particles for exploration missions to Mars and other destinations.


Assuntos
Radiação Cósmica , Marte , Doses de Radiação , Voo Espacial , Radiação Cósmica/efeitos adversos , Humanos , Astronautas , Método de Monte Carlo , Masculino
19.
Mutat Res ; 756(1-2): 108-14, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23643526

RESUMO

DNA damage and reactive oxygen species (ROS) generated by ionizing radiation (IR) activate DNA damage response (DDR) and cytokine signaling pathways, including double strand break (DSB) repair and TGFß/Smad signaling pathway. Proteins assembled at IR-induced DSB sites can be visualized as foci, including γH2AX, 53BP1, ATM and ATF2. Unrepaired DSBs are thought to be one origin of micronuclei (MN), an indicator of genotoxic stress and chromosomal instability. Studies have detected γH2AX in IR-induced MN, indicating the presence of DSB in MN. Previously we reported that TGFß downstream proteins Smad7 and phospho-Smad2 (pSmad2) co-localized with DDR proteins following radiation. Here we studied the status of Smad7 and pSmad2 in MN post high linear energy transfer (LET) radiation in human normal and cancerous cells. We observed γH2AX foci in IR-induced MN, whereas 53BP1 and ATF2 were absent. Interestingly, Smad7 foci, but not pSmad2, were detectable in both spontaneous and IR-induced MN. We compared the effect of particle track structures on the yield of MN using 5.6MeV/u boron (B) and 600MeV/u iron (Fe) particles with similar LET (200 and 180keV/µm, respectively) in human fibroblasts. The frequency of MN induced by B was lower than that by Fe particles, albeit the proportion of Smad7-positive to Smad7-negative MN remained constant. An increased frequency of spontaneous MN, with slightly higher ratio of Smad7 or γH2AX positive, was found in human prostate cancer cells (PC3) compared to normal cells. 24h after 1Gy of Fe particles exposure, the yield of MN increased, and the majority (∼70%) carried γH2AX and Smad7. Phospho-ATM (Ser1981) foci were found in both spontaneous and IR-induced MN in PC3 cells, displaying a much lower frequency compared to γH2AX and Smad7. Our data suggest a unique role of Smad7 in IR-induced MN formation, which may associate with DNA repair, apoptosis and genomic instability.


Assuntos
Núcleo Celular/genética , Esôfago/efeitos da radiação , Fibroblastos/efeitos da radiação , Raios gama , Neoplasias da Próstata/patologia , Pele/efeitos da radiação , Proteína Smad7/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Adulto , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Células Cultivadas , Radioisótopos de Césio , Proteínas de Ligação a DNA/metabolismo , Esôfago/citologia , Esôfago/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transferência Linear de Energia , Masculino , Testes para Micronúcleos , Fosforilação , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pele/citologia , Pele/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
20.
Radiat Res ; 199(3): 240-251, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693147

RESUMO

A mathematical model, which describes the level of surviving lymphocytes in the blood after ultra-high (FLASH) and lower dose rates of partial-body irradiation, is developed. The model is represented by simple analytic formulae that involve a few parameters, namely, physiologic parameters (characteristics of the blood flow through the blood circulatory system and its irradiated part), a biophysical parameter (a characteristic of the blood lymphocytes radiosensitivity), and the physical parameters (characteristics of irradiation). The model predicts that the level of surviving blood lymphocytes increases as the dose rate increases and approaches the limiting level of (1 - vR), where vR is the fraction of the blood volume in the irradiated part of the blood circulatory system. The model also predicts that the level of surviving blood lymphocytes after the same exposure is higher for lower vR. It is found that FLASH irradiation in humans with doses of 10 to 40 Gy and with exposure times significantly less (<1 s) than the blood circulation time (∼60 s) leads to the maximal blood lymphocyte sparing. Simple formula, which determines effective dose rates for optimal blood lymphocyte sparing, is derived in the framework of the developed model. For the dose range specified above, the obtained modeling prediction of the range of effective dose rates for optimal blood lymphocyte sparing in humans (namely, N ≥40 Gy/s) coincides with the dose rate range in FLASH radiation therapy. It is revealed that the respective effective dose rates for mice are higher than those for humans (for the same dose range) due to the shorter blood circulation time in mice than in humans. Proceeding from the findings obtained in this paper, a hypothesis elucidating the mechanisms of the abscopal effect of FLASH radiation therapy (namely, an antitumor response on metastases located outside of irradiated part of a body) is proposed.


Assuntos
Linfócitos , Tolerância a Radiação , Humanos , Animais , Camundongos , Linfócitos/efeitos da radiação , Animais de Laboratório , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA