Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 75(4): 569-575, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32821974

RESUMO

In this study the breadmaking potential of lupin flour from L. mutabilis after being debittered (DLF) and solid state fermented (FLF) was evaluated in lupin-wheat breads. Different levels of substitution (10, 15, 20%) were tested on dough rheology and the technological and nutritional (composition and in vitro digestibility indexes) properties of breads, as well as acceptability. Lupin weakened the dough during mixing, having shorter development time and stability, especially FLF. Less relevant was the effect of lupin flours along heating-cooling of the doughs recorded with the Mixolab. DLF and FLF significantly affected technological properties of the lupin-wheat breads at higher substitution (> 10%), particularly reducing bread volume, crust luminosity, crumb cohesiveness and resilience. Detrimental effects observed at the highest substitutions (20%) were diminished when using FLF, although breads received lower score due to the acidic taste detected by panelists. Both lupin flours provided lupin-wheat breads with rather similar composition, rising the average content of proteins, fat and dietary fiber by 0.8, 2.4, 6.5 %, respectively, compared to wheat breads. Likewise, lupin-wheat breads had significantly lower hydrolytic and glycemic indexes. Overall, debittered and fermented lupin could be used for enriching wheat breads, although better technological properties were observed with FLF.


Assuntos
Farinha , Lupinus , Pão , Fibras na Dieta , Triticum
2.
Nano Lett ; 18(6): 3746-3751, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29775315

RESUMO

Next-generation, atomically thin devices require in-plane, one-dimensional heterojunctions to electrically connect different two-dimensional (2D) materials. However, the lattice mismatch between most 2D materials leads to unavoidable strain, dislocations, or ripples, which can strongly affect their mechanical, optical, and electronic properties. We have developed an approach to map 2D heterojunction lattice and strain profiles with subpicometer precision and the ability to identify dislocations and out-of-plane ripples. We collected diffraction patterns from a focused electron beam for each real-space scan position with a high-speed, high dynamic range, momentum-resolved detector-the electron microscope pixel array detector (EMPAD). The resulting four-dimensional (4D) phase space data sets contain the full spatially resolved lattice information on the sample. By using this technique on tungsten disulfide (WS2) and tungsten diselenide (WSe2) lateral heterostructures, we have mapped lattice distortions with 0.3 pm precision across multimicron fields of view and simultaneously observed the dislocations and ripples responsible for strain relaxation in 2D laterally epitaxial structures.

3.
Microsc Microanal ; 18(4): 667-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22697429

RESUMO

The high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches--linear combination of power laws and local background averaging--that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis.

4.
ACS Omega ; 7(49): 44542-44555, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530229

RESUMO

Ever since coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, was declared a pandemic on March 11, 2020, by the WHO, a concerted effort has been made to find compounds capable of acting on the virus and preventing its replication. In this context, researchers have refocused part of their attention on certain natural compounds that have shown promising effects on the virus. Considering the importance of this topic in the current context, this study aimed to present a critical review and analysis of the main reports of plant-derived compounds as possible inhibitors of the two SARS-CoV-2 proteases: main protease (Mpro) and Papain-like protease (PLpro). From the search in the PubMed database, a total of 165 published articles were found that met the search patterns. A total of 590 unique molecules were identified from a total of 122 articles as potential protease inhibitors. At the same time, 114 molecules reported as natural products and with annotation of theoretical support and antiviral effects were extracted from the COVID-19 Help database. After combining the molecules extracted from articles and those obtained from the database, we identified 648 unique molecules predicted as potential inhibitors of Mpro and/or PLpro. According to our results, several of the predicted compounds with higher theoretical confidence are present in many plants used in traditional medicine and even food, such as flavonoids, carboxylic acids, phenolic acids, triterpenes, terpenes phytosterols, and triterpenoids. These are potential inhibitors of Mpro and PLpro. Although the predictions of several molecules against SARS-CoV-2 are promising, little experimental information was found regarding certain families of compounds. Only 45 out of the 648 unique molecules have experimental data validating them as inhibitors of Mpro or PLpro, with the most frequent scaffold present in these 45 compounds being the flavone. The novelty of this work lies in the analysis of the structural diversity of the chemical space among the molecules predicted as inhibitors of SARS-CoV-2 Mpro and PLpro proteases and the comparison to those molecules experimentally validated. This work emphasizes the need for experimental validation of certain families of compounds, preferentially combining classical enzymatic assays with interaction-based methods. Furthermore, we recommend checking the presence of Pan-Assay Interference Compounds (PAINS) and the presence of molecules previously reported as inhibitors of Mpro or PLpro to optimize resources and time in the discovery of new SARS-CoV-2 antivirals from plant-derived molecules.

5.
Ultramicroscopy ; 214: 112994, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32413681

RESUMO

Scanning nanobeam electron diffraction (NBED) with fast pixelated detectors is a valuable technique for rapid, spatially resolved mapping of lattice structure over a wide range of length scales. However, intensity variations caused by dynamical diffraction and sample mistilts can hinder the measurement of diffracted disk centers as necessary for quantification. Robust data processing techniques are needed to provide accurate and precise measurements for complex samples and non-ideal conditions. Here we present an approach to address these challenges using a transform, called the exit wave power cepstrum (EWPC), inspired by cepstral analysis in audio signal processing. The EWPC transforms NBED patterns into real-space patterns with sharp peaks corresponding to inter-atomic spacings. We describe a simple analytical model for interpretation of these patterns that cleanly decouples lattice information from the intensity variations in NBED patterns caused by tilt and thickness. By tracking the inter-atomic spacing peaks in EWPC patterns, strain mapping is demonstrated for two practical applications: mapping of ferroelectric domains in epitaxially strained PbTiO3 films and mapping of strain profiles in arbitrarily oriented core-shell Pt-Co nanoparticle fuel-cell catalysts. The EWPC transform enables lattice structure measurement at sub-pm precision and sub-nm resolution that is robust to small sample mistilts and random orientations.

6.
ACS Nano ; 11(12): 12057-12066, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29099576

RESUMO

Two-dimensional hexagonal boron nitride (h-BN) is a wide bandgap material which has promising mechanical and optical properties. Here we report the realization of an initial nucleation density of h-BN <1 per mm2 using low-pressure chemical vapor deposition (CVD) on polycrystalline copper. This enabled wafer-scale CVD growth of single-crystal monolayer h-BN with a lateral size up to ∼300 µm, bilayer h-BN with a lateral size up to ∼60 µm, and trilayer h-BN with a lateral size up to ∼35 µm. Based on the large single-crystal monolayer h-BN domain, the sizes of the as-grown bi- and trilayer h-BN grains are 2 orders of magnitude larger than typical h-BN multilayer domains. In addition, we achieved coalesced h-BN films with an average grain size ∼100 µm. Various flake morphologies and their interlayer stacking configurations of bi- and trilayer h-BN domains were studied. Raman signatures of mono- and multilayer h-BN were investigated side by side in the same film. It was found that the Raman peak intensity can be used as a marker for the number of layers.

7.
Nat Commun ; 6: 7716, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26177710

RESUMO

Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, but nonetheless powerful means of creating such films is via topotactic transformation, in which a chemical reaction transforms a single crystal of one phase into a single crystal of a different phase, which inherits its orientation from the original crystal. Topotactic reactions may be applied to epitactic films to substitute, add or remove ions to yield epitactic films of different phases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum (UHV) means of growing highly oriented single crystalline thin films of the easily over-oxidized half-metallic semiconductor europium monoxide (EuO) with a perfection rivalling that of the best films of the same material grown by molecular-beam epitaxy or UHV pulsed-laser deposition. As the technique only requires high-vacuum deposition equipment, it has the potential to drastically improve the accessibility of high-quality single crystalline films of EuO as well as other difficult-to-synthesize compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA