Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Cell ; 81(15): 3187-3204.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34157307

RESUMO

OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.


Assuntos
Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Endopeptidases/genética , Complexos Multiproteicos/metabolismo , Neovascularização Patológica/genética , Poliubiquitina/metabolismo , Adulto , Animais , Endopeptidases/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Fator 2 de Diferenciação de Crescimento/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Mutantes , Mutação , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Telangiectasia Hemorrágica Hereditária , Ubiquitina-Proteína Ligases/metabolismo
2.
Nucleic Acids Res ; 50(D1): D719-D728, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34669962

RESUMO

As an important post-translational modification, ubiquitination mediates ∼80% of protein degradation in eukaryotes. The degree of protein ubiquitination is tightly determined by the delicate balance between specific ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase-mediated deubiquitination. In 2017, we developed UbiBrowser 1.0, which is an integrated database for predicted human proteome-wide E3-substrate interactions. Here, to meet the urgent requirement of proteome-wide E3/deubiquitinase-substrate interactions (ESIs/DSIs) in multiple organisms, we updated UbiBrowser to version 2.0 (http://ubibrowser.ncpsb.org.cn). Using an improved protocol, we collected 4068/967 known ESIs/DSIs by manual curation, and we predicted about 2.2 million highly confident ESIs/DSIs in 39 organisms, with >210-fold increase in total data volume. In addition, we made several new features in the updated version: (i) it allows exploring proteins' upstream E3 ligases and deubiquitinases simultaneously; (ii) it has significantly increased species coverage; (iii) it presents a uniform confidence scoring system to rank predicted ESIs/DSIs. To facilitate the usage of UbiBrowser 2.0, we also redesigned the web interface for exploring these known and predicted ESIs/DSIs, and added functions of 'Browse', 'Download' and 'Application Programming Interface'. We believe that UbiBrowser 2.0, as a discovery tool, will contribute to the study of protein ubiquitination and the development of drug targets for complex diseases.


Assuntos
Bases de Dados Genéticas , Enzimas Desubiquitinantes/genética , Software , Ubiquitina-Proteína Ligases/genética , Enzimas Desubiquitinantes/classificação , Células Eucarióticas/metabolismo , Proteoma/genética , Especificidade por Substrato/genética , Ubiquitina-Proteína Ligases/classificação
3.
Semin Cancer Biol ; 67(Pt 2): 102-116, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31899247

RESUMO

Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-ß/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.


Assuntos
Neoplasias/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Genes Supressores de Tumor , Humanos , Camundongos Knockout , Neoplasias/genética , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
J Bone Miner Metab ; 39(6): 974-983, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34212247

RESUMO

INTRODUCTION: Bone loss is a major health concern for astronauts during long-term spaceflight and for patients during prolonged bed rest or paralysis. It is essential to develop therapeutic strategies to combat the bone loss occurring in people afflicted with disuse atrophy on earth as well as in astronauts in space, especially during prolonged missions. Although several drugs have been demonstrated for treating postmenopausal osteoporosis or bone-related diseases, their effects on microgravity-induced bone loss are still unclear. MATERIALS AND METHODS: Here, we employed the hindlimb-unloading (HLU) tail suspension model and compared the preventive efficiencies of five agents including alendronate (ALN), raloxifene (Rox), teriparatide (TPTD), anti-murine RANKL monoclonal antibody (anti-RANKL) and proteasome inhibitor bortezomib (Bzb) on mechanical unloading-induced bone loss. Bone mineral density (BMD) was measured by quantitative computed tomography. The osteoblastic and osteoclastic activity were measured by serum ELISA, histology analysis, and histomorphometric analysis. RESULTS: Compared to the control, ALN and anti-RANKL antibody could restore bone mass close to sham levels by inhibiting bone resorption. Bzb could increase the whole bone mass and strength by inhibiting bone resorption and promoting bone formation simultaneously. Meanwhile, Rox did not affect bone loss caused by HLU. TPTD stimulated cortical bone formation but the total bone mass was not increased significantly. CONCLUSIONS: We demonstrated for the first time that anti-RANKL antibody and Bzb had a positive effect on preventing mechanical unloading-induced bone loss. This finding puts forward the potential use of anti-RANKL and Bzb on bone loss therapies or prophylaxis of astronauts in spaceflight.


Assuntos
Reabsorção Óssea , Teriparatida , Animais , Anticorpos Monoclonais , Densidade Óssea , Reabsorção Óssea/tratamento farmacológico , Bortezomib , Humanos , Camundongos
5.
FASEB J ; 33(2): 2928-2943, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30335548

RESUMO

The bone morphogenetic protein (BMP)-Smad signaling pathway plays a crucial role in the control of bone homeostasis by regulating osteoblast activity. It is known that the ubiquitin ligase Smad ubiquitination regulatory factor (Smurf)1 is a master negative regulator of BMP signaling, but how its stability and activity are regulated remains poorly understood. Our study showed that valosin-containing protein/p97, the mutations of which lead to rare forms of Paget's disease of bone (PDB)-like syndrome-such as inclusion body myopathy (IBM) associated with Paget's disease of bone and frontotemporal dementia (IBM-PFD)-together with its adaptor nuclear protein localization (NPL)4, specifically interact with Smurf1 and deliver the ubiquitinated Smurf1 for degradation. Depletion of either p97 or NPL4 resulted in the elevation of Smurf1 protein level and decreased BMP signaling accordingly. Mechanically, a typical proline, glutamic acid, serine, and threonine motif specifically existing in Smurf1 is necessary for its recognition and degradation by p97, and this process is dependent on p97 ATPase activity. More importantly, compared with p97 WT, PDB-associated mutation of p97 (mainly A232E) harboring the higher ATPase activity of p97 further promoted Smurf1 degradation, thus increasing BMP signaling activity. Our findings first establish a link between p97 and Smurf1, providing an in-depth understanding of how Smurf1 is regulated, as well as the mechanism of p97-related bone diseases.-Li, H., Cui, Y., Wei, J., Liu, C., Chen, Y., Cui, C.-P., Li, L., Zhang, X., Zhang, L. VCP/p97 increases BMP signaling by accelerating ubiquitin ligase Smurf1 degradation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteína Morfogenética Óssea 1/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/genética , Proteína Morfogenética Óssea 1/genética , Humanos , Mutação , Proteínas Nucleares/genética , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Osteíte Deformante/patologia , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Proteína com Valosina/genética
6.
Adv Exp Med Biol ; 1217: 79-98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31898223

RESUMO

Stem cells can remain quiescent, self-renewal, and differentiate into many types of cells and even cancer stem cells. The coordination of these complex processes maintains the homeostasis of the organism. Ubiquitination is an important posttranslational modification process that regulates protein stability and activity. The ubiquitination levels of stem cell-associated proteins are closely related with stem cell characteristics. Cullin-RING Ligases (CRLs) are the largest family of E3 ubiquitin ligases, accounting for approximately 20% of proteins degraded by proteasome. In this review, we discuss the role of CRLs in stem cell homeostasis, self-renewal, and differentiation and expound their ubiquitination substrates. In addition, we also discuss the effect of CRLs on the formation of cancer stem cells that may provide promising therapy strategies for cancer.


Assuntos
Proteínas Culina/metabolismo , Células-Tronco/metabolismo , Animais , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Células-Tronco/citologia , Ubiquitinação
7.
J Biol Chem ; 293(23): 8886-8899, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29685889

RESUMO

The tumor suppressor phosphatase and tensin homolog (PTEN) plays a central role in regulating phosphatidylinositol 3-kinase (PI3K) signaling, and its gene is very frequently mutated in various human cancers. Numerous studies have revealed that PTEN levels are tightly regulated by both transcriptional and posttranslational modifications, with especially ubiquitylation significantly regulating PTEN protein levels. Although several ubiquitin ligases have been reported to mediate PTEN ubiquitylation in vitro, the ubiquitin ligase that promotes PTEN degradation in vivo has not been reported. Here we took advantage of specific knockout mouse models to demonstrate that WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) promotes PTEN degradation under physiological conditions, whereas another ubiquitin ligase, carboxyl terminus of Hsp70-interacting protein (CHIP), had no such effect. WWP2 knockout mice exhibited reduced body size, elevated PTEN protein levels, and reduced phosphorylation levels of the serine/threonine kinase and PTEN target AKT. In contrast, we observed no elevation of PTEN protein levels in CHIP knockout tissues and mouse embryonic fibroblasts. Furthermore, PTEN protein levels in CHIP/WWP2 double knockout mice were very similar to those in WWP2 single knockout mice and significantly higher than in WT and CHIP knockout mice. Our results demonstrate that WWP2, rather than CHIP, is an ubiquitin ligase that promotes PTEN degradation in vivo Considering PTEN's significant role in tumor development, we propose that WWP2 may be a potential target for fine-tuning PTEN levels in anticancer therapies.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
8.
Gut ; 66(12): 2149-2159, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28258134

RESUMO

OBJECTIVE: We investigated the effect and mechanism of hypoxic microenvironment and hypoxia-inducible factors (HIFs) on hepatocellular carcinoma (HCC) cancer stemness. DESIGN: HCC cancer stemness was analysed by self-renewal ability, chemoresistance, expression of stemness-related genes and cancer stem cell (CSC) marker-positive cell population. Specific small ubiquitin-like modifier (SUMO) proteases 1 (SENP1) mRNA level was examined with quantitative PCR in human paired HCCs. Immunoprecipitation was used to examine the binding of proteins and chromatin immunoprecipitation assay to detect the binding of HIFs with hypoxia response element sequence. In vivo characterisation was performed in immunocompromised mice and stem cell frequency was analysed. RESULTS: We showed that hypoxia enhanced the stemness of HCC cells and hepatocarcinogenesis through enhancing HIF-1α deSUMOylation by SENP1 and increasing stabilisation and transcriptional activity of HIF-1α. Furthermore, we demonstrated that SENP1 is a direct target of HIF-1/2α and a previously unrecognised positive feedback loop exists between SENP1 and HIF-1α. CONCLUSIONS: Taken together, our findings suggest the significance of this positive feedback loop between HIF-1α and SENP1 in contributing to the increased cancer stemness in HCC and hepatocarcinogenesis under hypoxia. Drugs that specifically target SENP1 may offer a potential novel therapeutic approach for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cisteína Endopeptidases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína SUMO-1/metabolismo , Animais , Western Blotting , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Imunoprecipitação , Neoplasias Hepáticas/patologia , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microambiente Tumoral
9.
J Pathol ; 230(4): 365-76, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23839903

RESUMO

The hepatic growth factor hepatopoietin Cn (HPPCn) prevents liver injury induced by carbon tetrachloride in rats. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid produced by sphingosine kinase (SphK). S1P and S1P receptors (S1PRs) are involved in liver fibrogenesis and oxidative injury. This work sought to understand the mechanism by which SphK/S1P/S1PRs are involved in the protective effects of HPPCn on ethanol-induced liver injury and fibrosis. Transgenic mice with liver-specific overexpression of HPPCn (HPPCn(liver) (+/+)) were generated. Two ethanol feeding protocols were used to assess the protective effect of HPPCn on acute and chronic liver injury in mice. Specific inhibitors of S1PR1, S1PR2 and S1PR3 and siRNA were used to examine the roles of S1PRs in hepatic stellate cell (HSC) activation and hepatocyte apoptosis. Increased HPPCn expression in transgenic mice attenuated fibrosis induced by ethanol and carbon tetrachloride (CCl4). Treatment with recombinant human HPPCn prevented human hepatocyte apoptosis and HSC activation. JTE-013 or S1PR2-siRNA attenuated the effect of HPPCn on HSC activation induced by tumour necrosis factor-α (TNF-α). Consistent with the effect of N,N-dimethylsphingosine (DMS), suramin or S1PR3-siRNA treatment blocked HPPCn-induced Erk1/2 phosphorylation in human hepatocytes. This study demonstrated that HPPCn attenuated oxidative injury and fibrosis induced by ethanol feeding and that the SphK1/S1P/S1PRs signalling pathway contributes to the protective effect of HPPCn on hepatocyte apoptosis and HSC activation.


Assuntos
Etanol , Fator de Crescimento de Hepatócito/metabolismo , Cirrose Hepática Alcoólica/prevenção & controle , Fígado/enzimologia , Proteínas Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/genética , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Alcoólica/enzimologia , Cirrose Hepática Alcoólica/etiologia , Cirrose Hepática Alcoólica/genética , Cirrose Hepática Alcoólica/patologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/genética , Estresse Oxidativo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
10.
Nat Commun ; 15(1): 4519, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806474

RESUMO

Protein ubiquitination regulates a wide range of cellular processes. The degree of protein ubiquitination is determined by the delicate balance between ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase (DUB)-mediated deubiquitination. In comparison to the E3-substrate interactions, the DUB-substrate interactions (DSIs) remain insufficiently investigated. To address this challenge, we introduce a protein sequence-based ab initio method, TransDSI, which transfers proteome-scale evolutionary information to predict unknown DSIs despite inadequate training datasets. An explainable module is integrated to suggest the critical protein regions for DSIs while predicting DSIs. TransDSI outperforms multiple machine learning strategies against both cross-validation and independent test. Two predicted DUBs (USP11 and USP20) for FOXP3 are validated by "wet lab" experiments, along with two predicted substrates (AR and p53) for USP22. TransDSI provides new functional perspective on proteins by identifying regulatory DSIs, and offers clues for potential tumor drug target discovery and precision drug application.


Assuntos
Enzimas Desubiquitinantes , Proteoma , Ubiquitinação , Humanos , Proteoma/metabolismo , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Aprendizado Profundo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/química , Especificidade por Substrato , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Aprendizado de Máquina , Ligação Proteica , Sequência de Aminoácidos , Tioléster Hidrolases
11.
Nat Commun ; 15(1): 2974, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582895

RESUMO

Linear ubiquitination catalyzed by HOIL-1-interacting protein (HOIP), the key component of the linear ubiquitination assembly complex, plays fundamental roles in tissue homeostasis by executing domain-specific regulatory functions. However, a proteome-wide analysis of the domain-specific interactome of HOIP across tissues is lacking. Here, we present a comprehensive mass spectrometry-based interactome profiling of four HOIP domains in nine mouse tissues. The interaction dataset provides a high-quality HOIP interactome resource with an average of approximately 90 interactors for each bait per tissue. HOIP tissue interactome presents a systematic understanding of linear ubiquitination functions in each tissue and also shows associations of tissue functions to genetic diseases. HOIP domain interactome characterizes a set of previously undefined linear ubiquitinated substrates and elucidates the cross-talk among HOIP domains in physiological and pathological processes. Moreover, we show that linear ubiquitination of Integrin-linked protein kinase (ILK) decreases focal adhesion formation and promotes the detachment of Shigella flexneri-infected cells. Meanwhile, Hoip deficiency decreases the linear ubiquitination of Smad ubiquitination regulatory factor 1 (SMURF1) and enhances its E3 activity, finally causing a reduced bone mass phenotype in mice. Overall, our work expands the knowledge of HOIP-interacting proteins and provides a platform for further discovery of linear ubiquitination functions in tissue homeostasis.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Animais , Camundongos , Homeostase , NF-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
Cell Death Dis ; 14(6): 378, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369659

RESUMO

The ubiquitin-proteasome system (UPS) controls protein turnover, and its dysfunction contributes to human diseases including cancer. Deubiquitinating enzymes (DUBs) remove ubiquitin from proteins to maintain their stability. Inhibition of DUBs could induce the degradation of selected oncoproteins and has therefore become a potential therapeutic strategy for cancer. The deubiquitylase OTUD3 was reported to promote lung tumorigenesis by stabilizing oncoprotein GRP78, implying that inhibition of OTUD3 may be a therapeutic strategy for lung cancer. Here, we report a small-molecule inhibitor of OTUD3 (named OTUDin3) by computer-aided virtual screening and biological experimental verification. OTUDin3 exhibited pronounced antiproliferative and proapoptotic effects by inhibiting deubiquitinating activity of OTUD3 in non-small-cell lung cancer (NSCLC) cell lines. Moreover, OTUDin3 efficaciously inhibited growth of lung cancer xenografts in mice. In summary, our results support OTUDin3 as a potent inhibitor of OTUD3, the inhibition of which may be a promising therapeutic strategy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Carcinogênese
13.
Adv Sci (Weinh) ; 10(16): e2207458, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038094

RESUMO

ß-TrCP is an E3 ubiquitin ligase that plays important roles in multiple human cancers including esophageal squamous cell carcinoma (ESCC). Analysis of ESCC patient samples reveal that only protein level but not transcript level of ß-TrCP associated with patient prognosis, suggesting regulators of ß-TrCP protein stability play an essential role in ESCC progression and may be novel targets to develop ESCC therapies. Although ß-TrCP stability is known to be mediated by the ubiquitin-proteasome system, it is unclear which enzymes play a major role to determine ß-TrCP stability in the context of ESCC. In this study, OTUD6B is identified as a potent deubiquitinase of ß-TrCP that suppress ESCC progression through the OTUD6B-ß-TrCP-SNAIL axis. Low OTUD6B expression is associated with a poor prognosis of ESCC patients. Importantly, all-trans retinoic acid (ATRA) is found to promote OTUD6B translation and thus suppress ESCC tumor growth and enhance the response of ESCC tumors to anti-PD-1 immunotherapies. These findings demonstrate that OTUD6B is a crucial deubiquitinase of ß-TrCP in ESCC and suggest combination of ATRA and anti-PD-1 immune checkpoint inhibitor may benefit a cohort of ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/terapia , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Linhagem Celular Tumoral , Tretinoína/farmacologia , Tretinoína/metabolismo , Enzimas Desubiquitinantes , Imunoterapia
14.
Signal Transduct Target Ther ; 8(1): 142, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024477

RESUMO

Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Dysregulation of this process leads to multiple diseases, including osteoporosis. However, the underlying molecular mechanisms are not fully understood. Here, we show that the global and conditional osteoblast knockout of a deubiquitinase Otub1 result in low bone mass and poor bone strength due to defects in osteogenic differentiation and mineralization. Mechanistically, the stability of FGFR2, a crucial regulator of osteogenesis, is maintained by OTUB1. OTUB1 attenuates the E3 ligase SMURF1-mediated FGFR2 ubiquitination by inhibiting SMURF1's E2 binding. In the absence of OTUB1, FGFR2 is ubiquitinated excessively by SMURF1, followed by lysosomal degradation. Consistently, adeno-associated virus serotype 9 (AAV9)-delivered FGFR2 in knee joints rescued the bone mass loss in osteoblast-specific Otub1-deleted mice. Moreover, Otub1 mRNA level was significantly downregulated in bones from osteoporotic mice, and restoring OTUB1 levels through an AAV9-delivered system in ovariectomy-induced osteoporotic mice attenuated osteopenia. Taken together, our results suggest that OTUB1 positively regulates osteogenic differentiation and mineralization in bone homeostasis by controlling FGFR2 stability, which provides an optical therapeutic strategy to alleviate osteoporosis.


Assuntos
Osteogênese , Osteoporose , Animais , Feminino , Camundongos , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Cell Death Dis ; 13(2): 97, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110537

RESUMO

Von Hippel-Lindau (VHL) is an important tumor suppressor, and its inactivation is a hallmark of inherited VHL disease and most sporadic clear cell renal cell carcinoma (ccRCC). VHL protein (pVHL) with missense point mutations are unstable and degraded by the proteasome because of the disruption of elongin binding. Deubiquitylase ovarian tumor domain-containing 6B (OTUD6B) had been documented to couple pVHL and elongin B to form stable VHL - elonginB - elonginC complex, which protects pVHL from degradation. However, whether OTUD6B governs the stability of pVHL wild type and the missense mutants in ccRCC remains largely elusive. Here, we reported that low OTUD6B level predicted poorer survival in ccRCC patients with VHL missense mutation, but not frameshift deletion and nonsense mutation. OTUD6B is able to interact with wild type pVHL and tumor-derived pVHL missense mutants, except for pVHL I151T, and decrease their ubiquitylation and proteasomal degradation in ccRCC cells. Functionally, we revealed that OTUD6B depletion enhanced cell migration and HIF-2α level in ccRCC cells in a pVHL dependent manner. In addition, OTUD6B depletion reduced the inhibitory effects of ectopic pVHL missense mutants on cell migration and HIF-2α level, except for pVHL I151T. Thus, we speculated that I151 residue might be one of key sites of pVHL binding to OTUD6B. These results suggested that OTUD6B is an important regulator for the stability of pVHL missense mutants, which provides a potential therapeutic strategy for ccRCC with VHL mutations.


Assuntos
Carcinoma de Células Renais/metabolismo , Movimento Celular , Endopeptidases/metabolismo , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Endopeptidases/genética , Humanos , Neoplasias Renais/patologia , Mutação , Prognóstico , Ligação Proteica , Estabilidade Proteica , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/genética
16.
Cell Rep ; 41(1): 111435, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198274

RESUMO

Autophagy is essential for the maintenance of energy homeostasis and for survival during the neonatal starvation period. At birth, the trans-placental nutrient supply is suddenly interrupted, and neonates adapt to this adverse circumstance by activating autophagy. However, the mechanisms underlying the precise regulation of neonatal autophagy remain undefined. Here, we show that the destabilization of TP53 by the deubiquitylase ubiquitin-specific peptidase 10 (USP10) is essential for neonatal autophagy and survival. Usp10 deficiency results in decreased E3 ligase activity of MDM2 and accumulation of cytoplasmic TP53, which interferes with the conjugation of ATG12 and ATG5, the key autophagy-related genes, and ultimately inhibits autophagy in neonatal mice. Combined deletion of Tp53 and Usp10 recovers the nutrition supply and rescues the death phenotype of Usp10-deficient neonates. These findings reveal a role of the USP10-MDM2-TP53 axis in nutrient homeostasis and neonatal viability and provide insights into the long-perplexing mechanism by which cytoplasmic TP53 inhibits autophagy.


Assuntos
Autofagia , Placenta , Animais , Proteína 5 Relacionada à Autofagia , Feminino , Camundongos , Gravidez , Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases , Proteases Específicas de Ubiquitina
17.
Cell Mol Immunol ; 19(2): 276-289, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34876703

RESUMO

The E3 ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase (DUB)-mediated deubiquitination processes are closely associated with the occurrence and development of colonic inflammation. Ovarian tumor deubiquitinase 1 (OTUD1) is involved in immunoregulatory functions linked to infectious diseases. However, the effect of OTUD1 on intestinal immune responses during colonic inflammatory disorders such as inflammatory bowel disease (IBD) remains unclear. Here, we show that loss of OTUD1 in mice contributes to the pathogenesis of dextran sulfate sodium (DSS)-induced colitis via excessive release of proinflammatory cytokines. In addition, bone marrow transplantation experiments revealed that OTUD1 in hematopoietic cells plays a dominant role in protection against colitis. Mechanistically, OTUD1 physically interacts with receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and selectively cleaves K63-linked polyubiquitin chains from RIPK1 to inhibit the recruitment of NF-κB essential modulator (NEMO). Moreover, the expression of OTUD1 in mucosa samples from ulcerative colitis (UC) patients was lower than that in mucosa samples from healthy controls. Furthermore, we demonstrate that the UC-associated OTUD1 G430V mutation abolishes the ability of OTUD1 to inhibit RIPK1-mediated NF-κB activation and intestinal inflammation. Taken together, our study unveils a previously unexplored role of OTUD1 in moderating intestinal inflammation by inhibiting RIPK1-mediated NF-κB activation, suggesting that the OTUD1-RIPK1 axis could be a potential target for the treatment of IBD.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Animais , Colite Ulcerativa/patologia , Enzimas Desubiquitinantes/metabolismo , Sulfato de Dextrana , Humanos , Inflamação , Camundongos , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
18.
Front Cell Dev Biol ; 9: 686395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262903

RESUMO

Linear ubiquitination is a reversible posttranslational modification, which plays key roles in multiple biological processes. Linear ubiquitin chain assembly complex (LUBAC) catalyzes linear ubiquitination, while the deubiquitinase OTULIN (OTU deubiquitinase with linear linkage specificity, FAM105B) exclusively cleaves the linear ubiquitin chains. However, our understanding of linear ubiquitination is restricted to a few substrates and pathways. Here we used a human proteome microarray to detect the interacting proteins of LUBAC and OTULIN by systematically screening up to 20,000 proteins. We identified many potential interacting proteins of LUBAC and OTULIN, which may function as regulators or substrates of linear ubiquitination. Interestingly, our results also hint that linear ubiquitination may have broad functions in diverse pathways. In addition, we recognized lymphocyte activation gene-3 (LAG3, CD223), a transmembrane receptor that negatively regulates lymphocyte functions as a novel substrate of linear ubiquitination in the adaptive immunity pathway. In conclusion, our results provide searchable, accessible data for the interacting proteins of LUBAC and OTULIN, which broaden our understanding of linear ubiquitination.

19.
iScience ; 24(10): 103097, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622152

RESUMO

The serine/arginine-rich (SR) family of splicing factors plays important roles in mRNA splicing activation, repression, export, stabilization, and translation. SR-splicing factor 5 (SRSF5) is a glucose-inducible protein that promotes tumor cell growth. However, the functional role of SRSF5 in tissue development and disease remains unknown. Here, Srsf5 knockout (Srsf5 -/- ) mice were generated using CRISPR-Cas9. Mutant mice were perinatally lethal and exhibited cardiac dysfunction with noncompaction of the ventricular myocardium. The left ventricular internal diameter and volume were increased in Srsf5 -/- mice during systole. Null mice had abnormal electrocardiogram patterns, indicative of a light atrioventricular block. Mechanistically, Srsf5 promoted the alternative splicing of Myom1 (myomesin-1), a protein that crosslinks myosin filaments to the sarcomeric M-line. The switch between embryonic and adult isoforms of Myom1 could not be completed in Srsf5-deficient heart. These findings indicate that Srsf5-regulated alternative splicing plays a critical role during heart development.

20.
Cell Res ; 31(3): 291-311, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33299139

RESUMO

PTEN tumor suppressor opposes the PI3K/Akt signaling pathway in the cytoplasm and maintains chromosomal integrity in the nucleus. Nucleus-cytoplasm shuttling of PTEN is regulated by ubiquitylation, SUMOylation and phosphorylation, and nuclear PTEN has been proposed to exhibit tumor-suppressive functions. Here we show that PTEN is conjugated by Nedd8 under high glucose conditions, which induces PTEN nuclear import without effects on PTEN stability. PTEN neddylation is promoted by the XIAP ligase and removed by the NEDP1 deneddylase. We identify Lys197 and Lys402 as major neddylation sites on PTEN. Neddylated PTEN accumulates predominantly in the nucleus and promotes rather than suppresses cell proliferation and metabolism. The nuclear neddylated PTEN dephosphorylates the fatty acid synthase (FASN) protein, inhibits the TRIM21-mediated ubiquitylation and degradation of FASN, and then promotes de novo fatty acid synthesis. In human breast cancer tissues, neddylated PTEN correlates with tumor progression and poor prognosis. Therefore, we demonstrate a previously unidentified pool of nuclear PTEN in the Nedd8-conjugated form and an unexpected tumor-promoting role of neddylated PTEN.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Proteína NEDD8/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/genética , Animais , Endopeptidases/genética , Endopeptidases/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Técnicas de Inativação de Genes/métodos , Glucose/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Proteína NEDD8/genética , PTEN Fosfo-Hidrolase/genética , Transfecção , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA