Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(5): 135, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704787

RESUMO

KEY MESSAGE: The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Biogênese de Organelas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Proteômica
2.
Sci Total Environ ; 790: 148245, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380284

RESUMO

No consensus has been achieved among researchers on the effect of dissolved oxygen (DO) on nitrate (NO3--N) transformation and the microbial community, especially during aerobic-anoxic transition. To supplement this knowledge, NO3--N transformation, microbial communities, co-occurrence networks, and functional genes were investigated during aerobic-anoxic transition via microcosm simulation. NO3--N transformation rate in the early stage (DO ≥2 mg/L) was always significantly higher than that in the later stage (DO <2 mg/L) during aerobic-anoxic transition, and NO2--N accumulation was more significant during the anoxic stage, consistent with the result obtained under constant DO conditions. These NO3--N transformation characteristics were not affected by other environmental factors, indicating the important role of DO in NO3--N transformation during aerobic-anoxic transition. Changes in DO provoked significant alterations in microbial diversity and abundance of functional bacteria dominated by Massilia, Bacillus, and Pseudomonas, leading to the variation in NO3--N transformation. Co-occurrence network analysis revealed that NO3--N transformation was performed by the interactions between functional bacteria including symbiotic and competitive relationship. In the presence of oxygen, these interactions accelerated the NO3--N transformation rate, and bacterial metabolization proceeded via increasingly varied pathways including aerobic and anoxic respiration, which was demonstrated through predicted genes. The higher relative abundance of genes narG, narH, and napA suggested the occurrence of coupled aerobic-anoxic denitrification in the early stage. NO3--N transformation rate decreased accompanied by a significant NO2--N accumulation with the weakening of coupled aerobic-anoxic denitrification during aerobic-anoxic transition. Structural equation modeling further demonstrated the relationship between DO and NO3--N transformation. DO affects NO3--N transformation by modifying microbial community, bacterial co-occurrence, and functional genes during aerobic-anoxic transition.


Assuntos
Microbiota , Nitratos , Reatores Biológicos , Desnitrificação , Nitrogênio , Óxidos de Nitrogênio , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA