Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Chem Soc Rev ; 53(7): 3302-3326, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38354058

RESUMO

Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices.

2.
Small ; 20(19): e2308266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100155

RESUMO

Developing well-crystallized light-absorbing layers remains a formidable challenge in the progression of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. A critical aspect of optimizing CZTSSe lies in accurately governing the high-temperature selenization reaction. This process is intricate and demanding, with underlying mechanisms requiring further comprehension. This study introduces a precursor microstructure-guided hetero-nucleation regulation strategy for high-quality CZTSSe absorbers and well-performing solar cells. The alcoholysis of 2-methoxyethanol (MOE) and the generation of high gas-producing micelles by adding hydrogen chloride (HCl) as a proton additive into the precursor solution are successfully suppressed. This tailored modification of solution components reduces the emission of volatiles during baking, yielding a compact and dense precursor microstructure. The reduced-roughness surface nurtures the formation of larger CZTSSe nuclei, accelerating the ensuing Ostwald ripening process. Ultimately, CZTSSe absorbers with enhanced crystallinity and diminished defects are fabricated, attaining an impressive 14.01% active-area power conversion efficiency. The findings elucidate the influence of precursor microstructure on the selenization reaction process, paving a route for fabricating high-quality kesterite CZTSSe films and high-efficiency solar cells.

3.
Angew Chem Int Ed Engl ; : e202406198, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864280

RESUMO

As a highly promising next-generation high-specific capacity anode, the industrial-scale utilization of micron silicon has been hindered by the issue of pulverization during cycling. Although numerous studies have demonstrated the effectiveness of regulating the inorganic components of the solid electrolyte interphase (SEI) in improving pulverization, the evolution of most key inorganic components in the SEI and their correlation with silicon failure mechanisms remain ambiguous. This study provides a clear and direct correlation between the lithium hydride (LiH) in the SEI and the degree of micron silicon pulverization in the battery system. The reverse lithiation behavior of LiH on micron silicon during de-lithiation exacerbates the localized stress in silicon particles and contributes to particle pulverization. This work successfully proposes a novel approach to decouple the SEI from electrochemical performance, which can be significant to decipher the evolution of critical SEI components at varied battery anode interfaces and analyze their corresponding failure mechanisms.

4.
Angew Chem Int Ed Engl ; 63(5): e202315710, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078788

RESUMO

High energy density lithium-ion batteries (LIBs) adopting high-nickel layered oxide cathodes and silicon-based composite anodes always suffer from unsatisfied cycle life and poor safety performance, especially at elevated temperatures. Electrode /electrolyte interphase regulation by functional additives is one of the most economic and efficacious strategies to overcome this shortcoming. Herein, cyano-groups (-CN) are introduced into lithium fluorinated phosphate to synthesize a novel multifunctional additive of lithium tetrafluoro (1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) phosphate (LiTFTCP), which endows high nickel LiNi0.8 Co0.1 Mn0.1 O2 /SiOx -graphite composite full cell with an ultrahigh cycle life and superior safety characteristics, by adding only 0.5 wt % LiTFTCP into a LiPF6 -carbonate baseline electrolyte. It is revealed that LiTFTCP additive effectively suppresses the HF generation and facilitates the formation of a robust and heat-resistant cyano-enriched CEI layer as well as a stable LiF-enriched SEI layer. The favorable SEI/CEI layers greatly lessen the electrode degradation, electrolyte consumption, thermal-induced gassing and total heat-releasing. This work illuminates the importance of additive molecular engineering and interphase regulation in simultaneously promoting the cycling and thermal safety of LIBs with high-nickel NCMxyz cathode and silicon-based composite anode.

5.
Angew Chem Int Ed Engl ; 63(19): e202400797, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38477225

RESUMO

Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly-fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer-organic and inner-inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB- anions tend to integrate into lithium ion solvation structure to form a favorable fast-ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm-2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.

6.
J Am Chem Soc ; 145(40): 22158-22167, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779473

RESUMO

Li-SOCl2 batteries possess ultrahigh energy densities and superior safety features at a wide range of operating temperatures. However, the Li-SOCl2 battery system suffers from poor reversibility due to the sluggish kinetics of SOCl2 reduction during discharging and the oxidation of the insulating discharge products during charging. To achieve a high-power rechargeable Li-SOCl2 battery, herein we introduce the molecular catalyst I2 into the electrolyte to tailor the charging and discharging reaction pathways. The as-assembled rechargeable cell exhibits superior power density, sustaining an ultrahigh current density of 100 mA cm-2 during discharging and delivering a reversible capacity of 1 mAh cm-2 for 200 cycles at a current density of 2 mA cm-2 and 6 mAh cm-2 for 50 cycles at a current density of 5 mA cm-2. Our results reveal the molecular catalyst-mediated reaction mechanisms that fundamentally alter the rate-determining steps of discharging and charging in Li-SOCl2 batteries and highlight the viability of transforming a primary high-energy battery into a high-power rechargeable system, which has great potential to meet the ever-increasing demand of energy-storage systems.

7.
J Am Chem Soc ; 145(22): 12093-12104, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227815

RESUMO

Dual-ion batteries involving anion intercalation into graphite cathodes represent promising battery technologies for low-cost and high-power energy storage. However, the fundamental origins regarding much lower capacities of graphite cathodes in earth abundant and inexpensive multivalent electrolytes than in Li-ion electrolytes remain elusive. Herein, we reveal that the limited anion-storage capacity of a graphite cathode in multivalent electrolytes is rooted in the abnormal multivalent-cation co-intercalation with anions in the form of large-sized anionic complexes. This cation co-intercalation behavior persists throughout the stage evolution of graphite intercalation compounds and leads to a significant decrease of sites practically viable for capacity contribution inside graphite galleries. Further systematic studies illustrate that the phenomenon of cation co-intercalation into graphite is closely related to the high energy penalty of interfacial anion desolvation due to the strong cation-anion association prevalent in multivalent electrolytes. Leveraging this understanding, we verify that promoting ionic dissociation in multivalent electrolytes by employing high-permittivity and oxidation-tolerant co-solvents is effective in suppressing multivalent-cation co-intercalation and thus achieving increased capacity of graphite cathodes. For instance, introducing adiponitrile as a co-solvent to a Mg2+-based carbonate electrolyte leads to 83% less Mg2+ co-intercalation and a ∼29.5% increase in delivered capacity of the graphite cathode.

8.
Phys Chem Chem Phys ; 25(6): 4997-5006, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722925

RESUMO

We investigate the impact of Al incorporation on the structure and dynamics of Al-doped lithium thiophosphates (Li3-3xAlxPS4) based on ß-Li3PS4. 27Al and 6Li magic-angle spinning NMR spectra confirm that Al3+ ions occupy octahedral sites in the structure. Quantitative analyses of 27Al NMR spectra show that the maximum Al incorporation is x = 0.06 in Li3-3xAlxPS4. The ionic conductivity of ß-Li3PS4 is enhanced by over a factor 3 due to Al incorporation. Further increase of the Al doping level leads to the formation of a more complicated material consisting of multiple crystalline and distorted phases as indicated by 31P NMR spectra and powder X-ray diffraction. Consequently, novel Li ion diffusion pathways develop leading to a very high ionic conductivity at room temperature. NMR relaxometry shows that the activation barrier for long-range Li ion diffusion in ß-Li3PS4 hardly changes upon Al incorporation, but the onset temperature for motional narrowing comes down significantly due to Al doping. The activation barrier in the subsequently formed multiphase material decreases significantly, however, indicating a different more efficient Li ion conduction pathway.

9.
Angew Chem Int Ed Engl ; 62(31): e202306141, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37282795

RESUMO

The Germanium (Ge), as a fast-charging and high specific capacity (1568 mAh g-1 ) alloy anode, is greatly hampered in practical application by poor cyclability. To date, the understanding of cycling performance degradation remains elusive. This study illustrates that, contrary to conventional beliefs, most of the Ge material in failed anodes still retains good integrity and does not undergo severe pulverization. It is revealed that capacity degradation is clearly correlated to the interfacial evolution of lithium hydride (LiH). Tetralithium germanium hydride (Li4 Ge2 H), as a new species derived from LiH, is identified as the culprit of Ge anode degradation, which is the dominant crystalized component in an ever-growing and ever-insulating interphase. The significantly increased thickness of the solid electrolyte interface (SEI) is accompanied by the accumulation of insulating Li4 Ge2 H upon cycling, which severely retards the charge transport process and ultimately triggers the anode failure. We believe that the comprehensive understanding of the failure mechanism presented in this study is of great significance to promoting the design and development of alloy anode for the next generation of lithium-ion batteries.

10.
Angew Chem Int Ed Engl ; 62(14): e202217709, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744698

RESUMO

Magnesium (Mg) metal secondary batteries have attracted much attention for their high safety and high energy density characteristics. However, the significant issues of the cathode/electrolyte interphase (CEI) in Mg batteries are still being ignored. In this work, a significant CEI layer on the typical Mo6 S8 cathode surface has been unprecedentedly constructed through the oxidation of the chloride-free magnesium tetrakis(hexafluoroisopropyloxy)borate (Mg[B(hfip)4 ]2 ) salt under a proper charge cut-off voltage condition. The CEI has been identified to contain Bx Oy effective species originating from the oxidation of [B(hfip)4 ]- anion. It is confirmed that the Bx Oy species is beneficial to the desolvation of solvated Mg2+ , speeding up the interfacial Mg2+ transfer kinetics, thereby improving the Mg2+ -storage capability of Mo6 S8 host. The firstly reported CEI in Mg batteries will give deeper insights into the interface issues in multivalent electrochemical systems.

11.
Angew Chem Int Ed Engl ; 62(18): e202301574, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36862048

RESUMO

The spontaneously formed uncoordinated Pb2+ defects usually make the perovskite films demonstrate strong n-type with relatively lower carrier diffusion length and serious non-radiative recombination energy loss. In this work, we adopt different polymerization strategies to construct three-dimensional passivation frameworks in the perovskite layer. Thanks to the strong C≡N⋅⋅⋅Pb coordination bonding and the penetrating passivation structure, the defect state density is obviously reduced, accompanied by a significant increase in the carrier diffusion length. Additionally, the reduction of iodine vacancies also changed the Fermi level of the perovskite layer from strong n-type to weak n-type, which substantially promotes the energy level alignment and carrier injection efficiency. As a result, the optimized device achieved an efficiency exceeded 24 % (the certified efficiency is 24.16 %) with a high open-circuit voltage of 1.194 V, and the corresponding module achieved an efficiency of 21.55 %.

12.
Angew Chem Int Ed Engl ; 62(43): e202311589, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37669903

RESUMO

Hydrogel electrolytes hold great promise in developing flexible and safe batteries, but the presence of free solvent water makes battery chemistries constrained by H2 evolution and electrode dissolution. Although maximizing salt concentration is recognized as an effective strategy to reduce water activity, the protic polymer matrices in classical hydrogels are occupied with hydrogen-bonding and barely involved in the salt dissolution, which sets limitations on realizing stable salt-concentrated environments before polymer-salt phase separation occurs. Inspired by the role of protein methylation in regulating intracellular phase separation, here we transform the "inert" protic polymer skeletons into aprotic ones through methylation modification to weaken the hydrogen-bonding, which releases free hydrogen bond acceptors as Lewis base sites to participate in cation solvation and thus assist salt dissolution. An unconventionally salt-concentrated hydrogel electrolyte reaching a salt fraction up to 44 mol % while retaining a high Na+ /H2 O molar ratio of 1.0 is achieved without phase separation. Almost all water molecules are confined in the solvation shell of Na+ with depressed activity and mobility, which addresses water-induced parasitic reactions that limit the practical rechargeability of aqueous sodium-ion batteries. The assembled Na3 V2 (PO4 )3 //NaTi2 (PO4 )3 cell maintains 82.8 % capacity after 580 cycles, which is the longest cycle life reported to date.

13.
Angew Chem Int Ed Engl ; 62(2): e202213478, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36372778

RESUMO

Metal-cation defects and halogen-anion defects in perovskite films are critical to the efficiency and stability of perovskite solar cells (PSCs). In this work, a random polymer, poly(methyl methacrylate-co-acrylamide) (PMMA-AM), was synthesized to serve as an interfacial passivation layer for synergistically passivating the under-coordinated Pb2+ and anchor the I- of the [PbI6 ]4- octahedron. Additionally, the interfacial PMMA-AM passivation layer cannot be destroyed during the hole transport layer deposition because of its low solubility in chlorobenzene. This passivation leads to an enhancement in the open-circuit voltage from 1.12 to 1.22 V and improved stability in solar cell devices, with the device maintaining 95 % of the initial power conversion efficiency (PCE) over 1000 h of maximum power point tracking. Additionally, a large-area solar cell module was fabricated using this approach, achieving a PCE of 20.64 %.

14.
Angew Chem Int Ed Engl ; 62(34): e202302664, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37349889

RESUMO

Lithium difluoro(oxalato) borate (LiDFOB) has been widely investigated in lithium-ion batteries (LIBs) owing to its advantageous thermal stability and excellent aluminum passivation property. However, LiDFOB tends to suffer from severe decomposition and generate a lot of gas species (e.g., CO2 ). Herein, a novel cyano-functionalized lithium borate salt, namely lithium difluoro(1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) borate (LiDFTCB), is innovatively synthesized as a highly oxidative-resistant salt to alleviate above dilemma. It is revealed that the LiDFTCB-based electrolyte enables LiCoO2 /graphite cells with superior capacity retention at both room and elevated temperatures (e.g., 80 % after 600 cycles) with barely any CO2 gas evolution. Systematic studies reveal that LiDFTCB tends to form thin and robust interfacial layers at both electrodes. This work emphasizes the crucial role of cyano-functionalized anions in improving cycle lifespan and safety of practical LIBs.

15.
Angew Chem Int Ed Engl ; 61(29): e202204423, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35419905

RESUMO

Chalcogenides have been viewed as important conversion-type Mg2+ -storage cathodes to fulfill the high volumetric energy density promise of magnesium (Mg) batteries. However, the low initial Columbic efficiency and the rapid capacity degradation remain challenges for the chalcogenide cathodes, as the clear Mg2+ -storage mechanism has yet to be clarified. Herein, we illustrate that the charge storage mechanism of the Cu2-x Se cathode is a reversible displacement reaction along with a polyselenide (PSe) mediated solution process of anion-compensation. The unique anion redox improves charge storage, while the dissolution of PSe also leads to performance degradation. To address this issue, we introduce Mo6 S8 into the Cu2-x Se cathode to immobilize PSe, which significantly improves performance, especially the reversible capacity (from 140 mAh g-1 to 220 mAh g-1 ). This work provides inspiration for the modification of the Mg2+ -storage cathode, which is a milestone for high-performance Mg batteries.

16.
Angew Chem Int Ed Engl ; 61(40): e202209626, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35929378

RESUMO

Li-rich layered oxide (LLO) cathode materials with high specific capacities could significantly enhance the energy density of all-solid-state lithium batteries (ASSLBs). However, the specific practical capacities of LLO materials in ASSLBs are extremely low due to poor initial activation. Here, scanning transmission electron microscopy with in situ differential phase contrast imaging was first used to study the initial activation mechanism of Li1.2 Ni0.13 Co0.13 Mn0.54 O2 . Li-ion transport heterogeneity was observed in LLO grains and across the LLO/Li6 PS5 Cl interface, due to the coexistence of the nanoscale Li2 MnO3 and LiNi1/3 Co1/3 Mn1/3 O2 phases. Consequently, the severely constrained activation of Li2 MnO3 during the first charging could be attributed to a nanoscale phase separation in LLO, hindering Li-ion transport through its particles, and causing high impedance in the Li2 MnO3 domain/Li6 PS5 Cl interface. This study could facilitate interface design of high-performance LLO-based ASSLBs.

17.
Angew Chem Int Ed Engl ; 61(2): e202113086, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664355

RESUMO

Solid-state zinc (Zn) batteries offer a new candidate for emerging applications sensitive to volume, safety and cost. However, current solid polymeric or ceramic electrolyte structures remain poorly conductive for the divalent Zn2+ , especially at room temperature. Constructing a heterogeneous interface which allows Zn2+ percolation is a viable option, but this is rarely involved in multivalent systems. Herein, we construct a solid Zn2+ -ion conductor by inducing crystallization of tailored eutectic liquids formed by organic Zn salts and bipolar ligands. High-entropy eutectic-networks weaken the ion-association and form interfacial Zn2+ -percolated channels on the nucleator surfaces, resulting in a solid crystal with exceptional selectivity for Zn2+ transport (t Zn 2 + =0.64) and appreciable Zn2+ conductivity (σ Zn 2 + =3.78×10-5  S cm-1 at 30 °C, over 2 orders of magnitude higher than conventional polymers), and finally enabling practical ambient-temperature Zn/V2 O5 metal solid cells. This design principle leveraged by the eutectic solidification affords new insights on the multivalent solid electrochemistry suffering from slow ion migration.

18.
Angew Chem Int Ed Engl ; 61(8): e202113932, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34882937

RESUMO

In solution-processed organic-inorganic halide perovskite films, halide-anion related defects including halide vacancies and interstitial defects can easily form at the surfaces and grain boundaries. The uncoordinated lead cations produce defect levels within the band gap, and the excess iodides disturb the interfacial carrier transport. Thus these defects lead to severe nonradiative recombination, hysteresis, and large energy loss in the device. Herein, polyacrylonitrile (PAN) was introduced to passivate the uncoordinated lead cations in the perovskite films. The coordinating ability of cyano group was found to be stronger than that of the normally used carbonyl groups, and the strong coordination could reduce the I/Pb ratio at the film surface. With the PAN perovskite film, the device efficiency improved from 21.58 % to 23.71 % and the open-circuit voltage from 1.12 V to 1.23 V, the ion migration activation energy increased, and operational stability improved.

19.
J Am Chem Soc ; 143(43): 18041-18051, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34643377

RESUMO

For layered transition metal oxides cathode-based lithium batteries, the chemical degradation of electrolytes leads to fast battery capacity decay, severely challenging their practical applications. This kind of chemical degradation of electrolytes is caused by the oxidation of reactive oxygen (e.g., singlet oxygen) and the attack of free radicals during cycling. To address this, we first report a biologically inspired antiaging strategy of developing the photostabilizer with singlet oxygen- and free radicals-scavenging abilities as a cathode binder additive. It is fully evidenced that this binder system consisting of the binder additive and a commercially available polyvinylidene difluoride can scavenge singlet oxygen and free radicals generated during high-voltage cycling, thus significantly restraining electrolyte decomposition. As a result, high-voltage layered transition metal oxides-based lithium batteries with reproducibly superior electrochemical performance, even under elevated temperatures, can be achieved. This bioinspired strategy to scavenge reactive oxygen and free radicals heralds a new paradigm for manipulating the cathode/electrolyte interphase chemistry of various rechargeable batteries involving layered transition metal oxides-based cathodes.

20.
Small ; 17(3): e2005762, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33346405

RESUMO

In the development of solid-state lithium batteries, solid polymer electrolyte (SPE) has drawn extensive concerns for its thermal and chemical stability, low density, and good processability. Especially SPE efficiently suppresses the formation of lithium dendrite and promotes battery safety. However, most of SPE is derived from the matrix with simple functional group, which suffers from low ionic conductivity, reduced mechanical properties after conductivity modification, bad electrochemical stability, and low lithium-ion transference number. Appling macromolecular design with multiple functional groups to polymer matrix is accepted as a strategy to solve the problems of SPE fundamentally. In this review, macromolecular design based on lithium conducting groups is summarized including copolymerization, network construction, and grafting. Meanwhile, the construction of single-ion conductor polymer is also focused herein. Moreover, synergistic effects between the designed matrix, lithium salt, and fillers are reviewed with the objective to further improve the performance of SPE. At last, future studies on macromolecular design are proposed in the development of SPE for solid-state batteries with high energy density and durability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA