RESUMO
African swine fever (ASF) is an infectious disease caused by the African swine fever virus (ASFV), and has a high mortality rate. It has caused serious socioeconomic consequences worldwide. Currently, there are no available commercial vaccines or antiviral drug interventions. D1133L is one of the key genes for ASFV replication and antiviral drug screening. In this study, a virtual screening software program, PyRx, was used to screen libraries of compounds against the potential drug target D1133L. Twelve compounds with a high affinity for ASFV D1133L were screened, and cyproheptadine hydrochloride (periactin) was identified as a candidate drug. The periactin has little cytotoxicity, and which dose-dependently inhibited ASFV replication in vitro. Further research indicated that periactin could significantly down-regulate D1133L at the transcriptional and protein levels with RT-qPCR and western blot methods. This study has provided important candidate drugs for the prevention and treatment of ASF, as well as biological materials and new fields of view for the research and development of vaccines and drugs for ASFV.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/prevenção & controle , Replicação Viral , Antivirais/farmacologia , Antivirais/metabolismo , Ciproeptadina/metabolismo , Ciproeptadina/farmacologiaRESUMO
Circular RNAs (circRNAs) are a new type of endogenous noncoding RNA that exhibit a variety of biological functions. However, it is not clear whether they are involved in foot-and-mouth disease virus (FMDV) infection and host response. In this study, we established circRNA expression profiles in FMDV-infected PK-15 cells using RNA-seq (RNA-sequencing) technology analysis. The biological function of the differentially expressed circRNAs was determined by protein interaction network, Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment. We found 1100 differentially expressed circRNAs (675 downregulated and 425 upregulated) which were involved in various biological processes such as protein ubiquitination modification, cell cycle regulation, RNA transport, and autophagy. We also found that circRNAs identified after FMDV infection may be involved in the host cell immune response. RNA-Seq results were validated by circRNAs qRT-PCR. In this study, we analyzed for the first time circRNAs expression profile and the biological function of these genes after FMDV infection of host cells. The results provide new insights into the interactions between FMDV and host cells.
Assuntos
Vírus da Febre Aftosa , MicroRNAs , Animais , Vírus da Febre Aftosa/genética , Perfilação da Expressão Gênica/veterinária , Ontologia Genética , MicroRNAs/genética , RNA Circular/genéticaRESUMO
Cucumber (Cucumis sativus L.) is one of the most popular cultivated vegetable crops but it is intrinsically sensitive to cold stress due to its thermophilic nature. To explore the molecular mechanism of plant response to low temperature (LT) and the mitigation effect of exogenous nitric oxide (NO) on LT stress in cucumber, transcriptome changes in cucumber leaves were compared. The results showed that LT stress regulated the transcript level of genes related to the cell cycle, photosynthesis, flavonoid accumulation, lignin synthesis, active gibberellin (GA), phenylalanine metabolism, phytohormone ethylene and salicylic acid (SA) signaling in cucumber seedlings. Exogenous NO improved the LT tolerance of cucumber as reflected by increased maximum photochemical efficiency (Fv/Fm) and decreased chilling damage index (CI), electrolyte leakage and malondialdehyde (MDA) content, and altered transcript levels of genes related to phenylalanine metabolism, lignin synthesis, plant hormone (SA and ethylene) signal transduction, and cell cycle. In addition, we found four differentially expressed transcription factors (MYB63, WRKY21, HD-ZIP, and b-ZIP) and their target genes such as the light-harvesting complex I chlorophyll a/b binding protein 1 gene (LHCA1), light-harvesting complex II chlorophyll a/b binding protein 1, 3, and 5 genes (LHCB1, LHCB3, and LHCB5), chalcone synthase gene (CSH), ethylene-insensitive protein 3 gene (EIN3), peroxidase, phenylalanine ammonia-lyase gene (PAL), DNA replication licensing factor gene (MCM5 and MCM6), gibberellin 3 beta-dioxygenase gene (GA3ox), and regulatory protein gene (NPRI), which are potentially associated with plant responses to NO and LT stress. Notably, HD-ZIP and b-ZIP specifically responded to exogenous NO under LT stress. Taken together, these results demonstrate that cucumber seedlings respond to LT stress and exogenous NO by modulating the transcription of some key transcription factors and their downstream genes, thereby regulating photosynthesis, lignin synthesis, plant hormone signal transduction, phenylalanine metabolism, cell cycle, and GA synthesis. Our study unveiled potential molecular mechanisms of plant response to LT stress and indicated the possibility of NO application in cucumber production under LT stress, particularly in winter and early spring.
Assuntos
Cucumis sativus , Clorofila A/metabolismo , Cucumis sativus/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Giberelinas/farmacologia , Lignina/metabolismo , Óxido Nítrico/metabolismo , Fenilalanina/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/metabolismo , Plântula , Temperatura , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: African swine fever virus (ASFV) is a highly lethal virus that can infect porcine alveolar macrophages (PAMs). Since ASFV, China has dealt with a heavy blow to the pig industry. However, the effect of infection of ASFV strains isolated from China on PAM transcription level is not yet clarified. METHODS: In this study, RNA sequencing (RNA-seq) was used to detect the differential expression of genes in PAMs at different time points after ASFV-CN/GS/2018 infection. The fluorescent quantitative polymerase chain reaction (qPCR) method was used to confirm the altered expression of related genes in PAMs infected with ASFV. RESULTS: A total of 1154 differentially expressed genes were identified after ASFV-CN/GS/2018 infection, of which 816 were upregulated, and 338 were downregulated. GO and KEGG analysis showed that these genes were dynamically enriched in various biological processes, including innate immune response, inflammatory response, chemokines, and apoptosis. Furthermore, qPCR verified that the DEAD box polypeptide 58 (DDX58), Interferon-induced helicase C domain-containing protein 1 (IFIH1), Toll-like receptor 3 (TLR3), and TLR7 of PAMs were upregulated after ASFV infection, while TLR4 and TLR6 had a significant downward trend during ASFV infection. The expression of some factors related to antiviral and inflammation was altered significantly after ASFV infection, among which interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), IFIT2, Interleukin-6 (IL-6) were upregulated, and Ewing's tumor-associated antigen 1 homolog (ETAA1) and Prosaposin receptor GPR37 (GPR37) were downregulated. In addition, we discovered that ASFV infection is involved in the regulation of chemokine expression in PAMs, and the chemokines, such as C-X-C motif chemokine 8 (CXCL8) and CXCL10, were upregulated after infection. However, the expression of chemokine receptor C-X-C chemokine receptor type 2 (CXCR2) is downregulated. Also, that the transcriptional levels of pro-apoptotic and anti-apoptotic factors changed after infection. CONCLUSIONS: After ASFV-CN/GS/2018 infection, the expression of some antiviral and inflammatory factors in PAMs changed significantly. The ASFV infection may activates the RLR and TLR signaling pathways. In addition, ASFV infection is involved in regulating of chemokine expression in PAMs and host cell apoptosis.
Assuntos
Febre Suína Africana , Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Vírus da Febre Suína Africana , Animais , Quimiocinas/imunologia , Imunidade Inata , Macrófagos/imunologia , Receptores de Quimiocinas/imunologia , Suínos , Receptores Toll-LikeRESUMO
In this study, the differences in chlorophyll fluorescence transient (OJIP) and modulated 820 nm reflection (MR820) of cucumber leaves were probed to demonstrate an insight into the precise influence of melatonin (MT) on cucumber photosystems under low temperature stress. We pre-treated cucumber seedlings with different levels of MT (0, 25, 50, 100, 200, and 400 µmol · L-1) before imposing low temperature stress (10 °C/6 °C). The results indicated that moderate concentrations of MT had a positive effect on the growth of low temperature-stressed cucumber seedlings. Under low temperature stress conditions, 100 µmol · L-1 (MT 100) improved the performance of the active photosystem II (PSII) reaction centers (PIabs), the oxygen evolving complex activity (OEC centers) and electron transport between PSII and PSI, mainly by decreasing the L-band, K-band, and G-band, but showed differences with different duration of low temperature stress. In addition, these indicators related to quantum yield and energy flux of PSII regulated by MT indicated that MT (MT 100) effectively protected the electron transport and energy distribution in the photosystem. According to the results of WO-I ≥ 1 and MR820 signals, MT also affected PSI activity. MT 100 decreased the minimal value of MR/MRO and the oxidation rate of plastocyanin (PC) and PSI reaction center (P700) (Vox ), while increased â³MRslow/MRO and deoxidation rates of PC+ and P700 + (Vred ). The loss of the slow phase of MT 200 and MT 400-treated plants in the MR820 kinetics was due to the complete prevention of electron movement from PSII to re-reduce the PC+ and P700 +. These results suggest that appropriate MT concentration (100 µmol · L-1) can improve the photosynthetic performance of PS II and electron transport from primary quinone electron acceptor (QA) to secondary quinone electron acceptor (QB), promote the balance of energy distribution, strengthen the connectivity of PSI and PSII, improve the electron flow of PSII via QA to PC+ and P700 + from reaching PSI by regulating multiple sites of electron transport chain in photosynthesis, and increase the pool size and reduction rates of PSI in low temperature-stressed cucumber plants, All these modifications by MT 100 treatment promoted the photosynthetic electron transfer smoothly, and further restored the cucumber plant growth under low temperature stress. Therefore, we conclude that spraying MT at an appropriate concentration is beneficial for protecting the photosynthetic electron transport chain, while spraying high concentrations of MT has a negative effect on regulating the low temperature tolerance in cucumber.
RESUMO
Foot-and-mouth disease (FMD) is induced by FMD virus (FMDV) and characterized by fever and vesicular (blister-like) lesions. However, the exact composition of the vesicular fluid in pigs infected with FMDV remains unclear. To identify and analyze the components of the vesicular fluid in FMDV-infected domestic pigs, the fluid was collected and subjected to mass spectrometry. Further analyses were conducted using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG), and protein-protein interaction (PPI). Quantitative ELISA kit for TNF-α, and IFN-α, IFN-ß, IL-6, IL-10, IL-1ß, and IFN-γ were used to verify the mass spectrometry results. Results showed that 937 proteins were identified in the vesicular fluid from swine after FMDV infection, and bioinformatics analysis indicated that these proteins are related to the innate immune and inflammation pathways. The levels of cytokines involved in the disease-related pathways, tumor necrosis factors, and IL-6 in the fluid samples were significantly increased. This study identified and analyzed the composition of vesicular fluid in pigs after FMD infection for the first time and provided interesting information that help understand the infection and pathogenesis mechanism of FMD. These information will eventually contribute to the prevention and control of FMD.
RESUMO
African swine fever (ASF) has brought excellent barriers to swine production in China and the world. Studies have shown that extracellular vesicles mediate the RNA and protein spread of pathogenic microorganisms and RNA and proteins. After infection by pathogenic microorganisms causes significant differences in the proteins contained within extracellular vesicles. Based on the above studies, the extracellular vesicles were extracted from ASF virus (ASFV)-infected swine plasma. And qPCR, western blot, and confocal experiment were carried out. The research shows that extracted extracellular vesicles significantly promote the replication of ASFV in susceptible and non-susceptible cells Proteomics analysis of the extracellular vesicle proteins revealed that ASFV infection could cause significant differences in the protein profile. This study demonstrates that extracellular vesicles play a critical role in ASFV replication and transmission and cause significant differences in the protein profile encapsulated in extracellular vesicles.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vesículas Extracelulares , Febre Suína Africana/metabolismo , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Proteômica , Suínos , Replicação ViralRESUMO
The porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen causing epidemics of porcine reproductive and respiratory syndrome (PRRS), and is present in every major swine-farming country in the world. Previous studies have demonstrated that PRRSV infection leads to a range of consequences, such as persistent infection, secondary infection, and co-infection, and is common among pigs in the field. In recent years, coinfection of PRRSV and other porcine pathogens has occurred often, making it more difficult to define and diagnose PRRSV-related diseases. The study of coinfections may be extremely suitable for the current prevention and control in the field. However, there is a limited understanding of coinfection. Therefore, in this review, we have focused on the epidemiology of PRRSV coinfection with other pathogens in swine, both in vivo and in vitro.
RESUMO
African swine fever virus (ASFV) is prevalent in many countries and is a contagious and lethal virus that infects pigs, posing a threat to the global pig industry and public health. The interaction between the virus and the host is key to unlocking the mystery behind viral pathogenesis. A comprehensive understanding of the viral and host protein interaction may provide clues for developing new antiviral strategies. Here, we show a network of ASFV MGF360-9L protein interactions in porcine kidney (PK-15) cells. Overall, 268 proteins that interact with MGF360-9L are identified using immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS). Accordingly, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted, and the protein-protein interaction (PPI) network was created. It was speculated that the cellular proteins interacting with MGF360-9L are involved in protein binding, metabolism, and the innate immune response. Proteasome subunit alpha type (PSMA3), 26S protease regulatory subunit 4 (PSMC1), autophagy and beclin 1 regulator 1 (AMBRA1), and DEAD-box helicase 20 (DDX20) could interact with MGF360-9L in vitro. PSMA3 and PSMC1 overexpression significantly promoted ASFV replication, and MGF360-9L maintained the transcriptional level of PSMA3 and PSMC1. Here, we show the interaction between ASFV MGF360-9L and cellular proteins and elucidate the virus-host interaction network, which effectively provides useful protein-related information that can enable further study of the potential mechanism and pathogenesis of ASFV infection.
Assuntos
Vírus da Febre Suína Africana/genética , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Mapas de Interação de Proteínas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Febre Suína Africana/virologia , Animais , Células Cultivadas , Deleção de Genes , Ligação Proteica , Suínos , Replicação ViralRESUMO
In the attempt to elucidate the molecular mechanism of CMS. Ogura cytoplasmic male sterile (OguCMS) lines were obtained in Chinese cabbage after interspecific hybridization between Brassica. napus L. OguCMS and B. campestris ssp. chinensis followed by recurrent backcross with B. campestris ssp. chinensis as the pollen donor. The CMS lines were significantly characterized by the whitish anther and indehiscence of anther. The tapetal hypertrophy with excess vacuola-tion was the first observed defective soon after the tetrad stage, subsequently the microspores defected in pollen wall forma-tion, and later the cytoplasm detached from the exine wall and underwent degeneration. With aid of cDNA-AFLP and RACE approaches, we cloned the BcMYBogu(GenBank accession No: EF127861) in Chinese cabbage, which is premature expressed in early and middle stage floral buds of OguCMS lines, and predicted to encode a novel protein with a DNA binding domain: SH[AL]QKY[RF] motif at the N-terminus. Phylogenetic comparison revealed that the BcMYBogu was clustered with AtMYB32, AtMYB26 and AtMYB4, which were indicated to be involved in male sterility in Arabidopsis thaliana. The BcMYBogu transcript was detected in rosette leaves, floral buds and stems by RT-PCR analysis. Compared with the maintainer, the expression level of BcMYBogu was increased in these organs, especially in floral buds of OguCMS lines. Our investigation suggests that BcMYBogu is a new member of the MYB family involved in male sterility in Chinese cabbage.
Assuntos
Brassica/citologia , Brassica/genética , Citoplasma/genética , Genes myb/genética , Sequência de Aminoácidos , Sequência de Bases , Brassica/crescimento & desenvolvimento , Núcleo Celular/genética , Clonagem Molecular , DNA Complementar/genética , Fertilidade/genética , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Dados de Sequência Molecular , FenótipoRESUMO
We report a new hydrothermal and basic-additive free process for synthesizing a core(single-crystalline HBEA zeolite)-echinus(nickel phyllosilicate) catalyst, which exhibits excellent reactivity and stability for hydrogenation reactions. Desilication and dealumination processes generate substantial SiO32- ions and exposed Si-OH groups to form nickel phyllosilicate on the external and internal surfaces of zeolite.
RESUMO
Ni based catalysts are wildly used in catalytic industrial processes due to their low costs and high activities. The design of highly hierarchical core-shell structured Ni/HBEA is achieved using a sustainable, simple, and easy-tunable hydrothermal synthesis approach using combined NH4Cl and NH3·H2O as a co-precipitation agent at 120 °C. Starting from a single-crystalline hierarchical H+-exchanged beta polymorph zeolite (HBEA), the adjustment of the precipitate conditions shows that mixed NH4Cl and NH3·H2O precipitates with proper concentrations are vital in the hydrothermal synthesis for preserving a good crystalline morphology of HBEA and generating abundant highly-dispersed Ni nanoparticles (loading: 41 wt%, 5.9 ± 0.7 nm) encapsulated onto/into the support. NH4Cl solution without an alkali is unable to generate abundant Ni nanoparticles from Ni salts under the hydrothermal conditions, whereas NH3·H2O seriously damages the pore structure. After studying the in situ changes in infrared, X-ray diffractometry, temperature-programmed reduction, and scanning electron microscopy measurements, as well as variations in the filtrate pH, Si/Al ratios, and solid sample Ni loading, a two-step dissolution-recrystallization process is proposed. The process consists of Si dissolution and no change in elemental Al, and after the dissolved Si(iv) concentrations have promoted Ni phyllosilicate nanosheet solubility, further growth of multilayered Ni phyllosilicate nanosheets commences. The precursor Ni phyllosilicate is changeable between Ni3Si2O5(OH)4 and Ni3Si4O10(OH)2, because of competition in kinetically-favored and thermodynamically-controlled species caused by different basic agents. The superior catalytic performance is demonstrated in the metal/acid catalyzed biomass derived bulky stearic acid hydrodeoxygenation with 90% octadecane selectivity and a promising rate of 54 g g-1 h-1, which highly excels the reported rates catalyzed by Ni catalysts. Significant improvements in activity and selectivity are related to the highly dispersive Ni nanoparticles onto/into intra-mesopores of hierarchical HBEA, hence enhance the accessibility of bulky substrates to metal sites and mass transfer capacity.
RESUMO
Crosses between female parent of Ogura male sterility Brassica napus L. and male parents of B. campestris ssp. chinensis Makino were made and F(1), BC(1) and BC(2) generations produced. Gene expression of two Chinese cabbage backcross hybrid BC(1), BC(2) and their parents at bud stage was analyzed by means of cDNA-AFLP technique. The results indicated that the patterns of gene expression differ significantly between BC(1) and BC(2) generations and their parents. There were many patterns of gene expression, including gene overexpression and gene silencing. Five patterns (seven kinds) of gene expression were observed, which include: (1) bands occurring in only one parent (two kinds); (2) bands observed in hybrids and one parent (two kinds); (3) bands occurring in only parents (one kind); (4) bands visualized in only hybrids (one kind); (5) bands observed in parents and hybrids (one kind). In accompany with the addition of backcross, the increase trend in backcross hybrids and their parents were described in the aspects of differential gene expression, bands expressed only in one parent and bands expressed only in both parents. The declined trend in backcross hybrids and their parents were observed in the aspects of bands expressed in both hybrids and one parent (two kinds), bands visualized in only hybrids and bands observed in parents and hybrid. Fifteen patterns of gene expression were observed in F(1)bBC(1)bBC(2) and backcross parents. The percent of bands expressed in F(1)bBC(1)bBC(2) and backcross was highest.