RESUMO
A nanograined (NG) layer with an average grain size of less than 100 nm has been successfully prepared on a Tiâ»6Alâ»4V sheet surface by sliding friction treatment (SFT). The electrochemical corrosion/passive behavior and mechanical properties of an NG Tiâ»6Alâ»4V sheet were examined in this study. A bi-layer passive film that consisted of an outer TiO2-rich layer and an inner Al2O3-rich layer was formed on either an NG or coarse-grained (CG) surface. The improved corrosion was mainly caused by the enhanced stability and thickness of the passive layer. Tensile experiments were carried out to evaluate the mechanical properties at ambient temperature. The NG Tiâ»6Alâ»4V sample exhibited the high yield strength (956 MPa) with a moderate elongation of 8%. These superior comprehensive properties demonstrated its potential as a biomedical material.
RESUMO
In order to solve wear resistance of Ti alloy biomaterials, the concept of a graded nano-TiN coating has been proposed. The coating was prepared on Ti-6Al-4V bio-alloy by DC reactive magnetron sputtering. The wear performance of the coated specimens was measured in Hank's solution under the load of 10N, and the biocompatibility was evaluated according to ISO-10993-4 standard. The results show that the gradient coating exhibits a gradual change in compositions and microstructures along the direction of film growth. Nano-TiN with the size of several to dozens nanometers and Ti4N3-x transitional phase with variable composition form a graded composite structure, which significantly improves adhesion strength (Lc1=80N, Lc2=120N), hardness (21GPa) and anti-wear performance (6.2×10-7mm3/Nm). The excellent bonding and wear resistance result from a good match of mechanical properties at substrate/coating interface and the strengthening and toughening effects of the nanocrystalline composite. The nano-TiN coating has also been proved to have good biocompatibility through in-vitro cytotoxicity, hemocompatibility and general toxicity tests. And thus, the proposed graded nano-TiN coating is a good candidate improving wear resistance of many implant medical devices.