Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4658, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537158

RESUMO

Material-based tactics have attracted extensive attention in driving the functional evolution of organisms. In aiming to design steerable bioartificial organisms to scavenge pathogenic waterborne viruses, we engineer Paramecium caudatum (Para), single-celled microorganisms, with a semiartificial and specific virus-scavenging organelle (VSO). Fe3O4 magnetic nanoparticles modified with a virus-capture antibody (MNPs@Ab) are integrated into the vacuoles of Para during feeding to produce VSOs, which persist inside Para without impairing their swimming ability. Compared with natural Para, which has no capture specificity and shows inefficient inactivation, the VSO-engineered Para (E-Para) specifically gathers waterborne viruses and confines them inside the VSOs, where the captured viruses are completely deactivated because the peroxidase-like nano-Fe3O4 produces virus-killing hydroxyl radicals (•OH) within acidic environment of VSO. After treatment, magnetized E-Para is readily recycled and reused, avoiding further contamination. Materials-based artificial organelles convert natural Para into a living virus scavenger, facilitating waterborne virus clearance without extra energy consumption.


Assuntos
Vírus , Radical Hidroxila , Peroxidase , Peroxidases , Anticorpos Antivirais
2.
J Mater Chem B ; 11(45): 10923-10928, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934507

RESUMO

The strategy of using tumor cells to construct whole-cell cancer vaccines has received widespread attention. However, the limited immunogenicity of inactivated tumor cells and the challenge of overcoming immune suppression in solid tumors have hindered the application of whole-cell-based cancer immune therapy. Inspired by the regulatory effects of MnO2 and spatiotemporal control capability of material layers in cell surface engineering, we developed a manganese (Mn)-mineralized tumor cell, B16F10@MnO2, by inactivating B16F10 melanoma cells with KMnO4 to generate manganese-mineralized tumor cells. The cell-based composite was formed by combining amorphous MnO2 with the membrane structure of cells based on the redox reaction between KMnO4 and tumor cells. The MnO2 layer induced a stronger phagocytosis of ovalbumin (OVA)-expressing tumor cells by antigen presenting cells than formaldehyde-fixed cells did, resulting in specific antigen-presentation in vitro and in vivo and subsequent immune responses. Intratumoral therapy with B16F10@MnO2 inhibited B16F10 tumor growth. Moreover, the infiltration of CD8+ T cells within B16F10 solid tumors and the proportion of central memory T cells both increased in B16F10@MnO2 treated tumor-bearing mice, indicating enhanced adaptive immunity. This study provides a convenient and effective method to improve whole-cell-based anti-tumor therapy.


Assuntos
Vacinas Anticâncer , Melanoma Experimental , Camundongos , Animais , Linfócitos T CD8-Positivos , Manganês , Compostos de Manganês/farmacologia , Melanoma Experimental/terapia , Óxidos/farmacologia , Imunoterapia/métodos
3.
iScience ; 26(10): 107946, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37854690

RESUMO

Phase Change Materials (PCMs) have demonstrated tremendous potential as a platform for achieving diverse functionalities in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum, ranging from terahertz to visible frequencies. This comprehensive roadmap reviews the material and device aspects of PCMs, and their diverse applications in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum. It discusses various device configurations and optimization techniques, including deep learning-based metasurface design. The integration of PCMs with Photonic Integrated Circuits and advanced electric-driven PCMs are explored. PCMs hold great promise for multifunctional device development, including applications in non-volatile memory, optical data storage, photonics, energy harvesting, biomedical technology, neuromorphic computing, thermal management, and flexible electronics.

5.
ACS Appl Mater Interfaces ; 14(35): 39873-39884, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36018064

RESUMO

Despite the great potency of vaccines to combat infectious diseases, their global use is hindered by a lack of thermostability, which leads to a constant need for cold-chain storage. Here, aiming at long-term thermostability and eliminating cold-chain requirements of bioactive vaccines, we propose that efforts should focus on tailoring the conformational stability of vaccines. Accordingly, we design a nanocoating composed of histidine (His)-coordinated amorphous Zn and 2-methylimidazolate complex (His-aZn-mIM) on single nanoparticles of viral vaccines to introduce intramolecular coordinated linkage between viruses and the nanocoatings. The coordinated nanocoating enhances the rigidity of proteins and preserves the vaccine's activity. Importantly, integrating His into the original Zn-N coordinative environment symbiotically reinforces its tolerance to biological and hydrothermal solutions, resulting in the augmented thermostability following the Hofmeister effect. Thus, even after storage of His-aZn-mIM encapsulated Human adenovirus type 5 (Ad5@His-aZn-mIM) at 25 °C for 90 d, the potency loss of the coated Ad5 is less than 10%, while the native Ad5 becomes 100% ineffective within one month. Such a nanocoating gains thermostability by forming an ultrastable hydration shell, which prevents viral proteins from unfolding under the attack of hydration ions, providing a conformational stabilizer upon heat exposure. Our findings represent an easy-access biomimetic platform to address the long-term vaccine storage without the requirement of a cold chain.


Assuntos
Adenovírus Humanos , Vacinas Virais , Excipientes , Humanos , Conformação Molecular , Refrigeração
6.
Adv Healthc Mater ; 11(23): e2201161, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36103604

RESUMO

The organic-inorganic structure in biological hard tissues ensures their marvelous characteristics but these hybrids are easily destroyed by the demineralization of inorganic components, e.g., the damage of dentin. Current clinical materials for hard tissue regeneration commonly act as "fillers" and their therapeutic effect is limited by the failures of biological-linked organic-inorganic interface reconstruction. Herein, a fast in situ crosslinking of calcium phosphate oligomers (CPOs) on collagen matrixes for efficient organic-inorganic interface re-construction, which can result in a biomimetic hybrid, is demonstrated. By using damaged dentin as an example, the inorganic ionic crosslinking can instantly infiltrate into the dentin matrix to rebuild a dense and continuous calcium phosphate-collagen hybrid within only 5 min, where the structurally integrated organic-inorganic interface is identical to natural dentin. As a result, the damaged dentin can be fully recovered to a healthy one, which is superior to any current dentin treatments. The fast construction of biomimetic hybrid by inorganic ionic crosslinking provides a promising strategy for hard tissue repair and follows great potentials of CPOs as advanced biomedical materials in future.


Assuntos
Biomimética , Fosfatos de Cálcio , Fosfatos de Cálcio/farmacologia , Colágeno
7.
Artigo em Inglês | MEDLINE | ID: mdl-33644977

RESUMO

Instinctive hierarchically biomineralized structures of various organisms, such as eggs, algae, and magnetotactic bacteria, afford extra protection and distinct performance, which endow fragile organisms with a tenacious ability to adapt and survive. However, spontaneous formation of hybrid materials is difficult for most organisms in nature. Rapid development of chemistry and materials science successfully obtained the combinations of organisms with nanomaterials by biomimetic mineralization thus demonstrating the reproduction of the structures and functions and generation of novel functions that organisms do not possess. The rational design of biomaterial-organism hybridization can control biological recognition, interactions, and metabolism of the organisms. Thus, nanomaterial-organism hybrids represent a next generation of organism engineering with great potential biomedical applications. This review summarizes recent advances in material-directed organism engineering and is mainly focused on biomimetic mineralization technologies and their outstanding biomedical applications. Three representative types of biomimetic mineralization are systematically introduced, including external mineralization, internal mineralization, and genetic engineering mineralization. The methods involving hybridization of nanomaterials and organisms based on biomimetic mineralization strategies are described. These strategies resulted in applications of various nanomaterial-organism hybrids with multiplex functions in cell engineering, cancer treatment, and vaccine improvement. Unlike classical biological approaches, this material-based bioregulation is universal, effective, and inexpensive. In particular, instead of traditional medical solutions, the integration of nanomaterials and organisms may exploit novel strategies to solve current biomedical problems. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Assuntos
Materiais Biomiméticos , Biomineralização , Nanomedicina , Nanoestruturas , Materiais Biocompatíveis , Biomimética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA