Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Fish Shellfish Immunol ; 152: 109799, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098748

RESUMO

LRR-only protein (LRRop) is an important class of immune molecules that function as pattern recognition receptor in invertebrates, however, the bacterial inhibitory activity of this proteins remain largely unknown. Herein, a novel LRRop was cloned from Eriocheir sinensis and named as EsLRRop2. The EsLRRop2 consists of six LRR motifs and formed a horseshoe shape three-dimension structure. EsLRRop2 was mainly expressed in intestine and hepatopancreas. The transcripts of EsLRRop2 in the intestine and hepatopancreas were induced by Vibrio parahaemolyticus and Staphylococcus aureus, and displayed similar transcriptional profiles. The expression levels of EsLRRop2 responded more rapidly and highly to V. parahaemolyticus than S. aureus in the intestine and hepatopancreas. Although the basal expression level of EsLRRop2 in hemocytes was relatively low, its transcripts in hemocytes were significantly induced by V. parahaemolyticus and S. aureus. The recombinant proteins of EsLRRop2 (rEsLRRop2) displayed a wide range of binding spectrum against vibrios, including V. parahaemolyticus, V. alginolyticus, and V. harveryi. The rEsLRRop2 showed dose- and time-dependent inhibitory activity against V. parahaemolyticus and S. aureus, and it could agglutinate the two bacteria. Furthermore, the inhibitory activities of rEsLRRop2 against V. parahaemolyticus, V. alginolyticus, V. harveryi and S. aureus was slightly affected by pH and salinity, and the rEsLRRop2 displayed the strongest inhibitory activity against all the three vibrios when the salinity was 20 ‰ and pH was 8.0. Collectively, these results elucidate the bacterial binding and inhibitory activities of EsLRRop2, and provide theoretical foundations for the application of rEsLRRop2 in prevention and control of vibrio diseases in aquaculture.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Braquiúros , Filogenia , Staphylococcus aureus , Vibrio parahaemolyticus , Braquiúros/imunologia , Braquiúros/genética , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Vibrio parahaemolyticus/fisiologia , Staphylococcus aureus/fisiologia , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia , Sequência de Bases
2.
Fish Shellfish Immunol ; 145: 109300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104701

RESUMO

The leucine-rich repeat (LRR) domain is a crucial structure in a variety of immune related proteins and displays multiple immune functions. In this study, the open reading frame (ORF) of an LRR-only protein was cloned from the Chinese mitten crab, Eriocheir sinensis (EsLRRop1). The protein sequence of EsLRRop1 contained seven LRR motifs, three LRR-TYP motifs and an LRRCT motif. Tissue distribution exhibited that EsLRRop1 mainly expressed in nervous tissues including thoracic ganglion, eyestalk and brain while showed relatively lower transcriptional level in hemocyte. Based on the above expression characteristics, the responses of EsLRRop1 to the challenge of Vibrio parahaemolyticus and Staphylococcus aureus were tested. The result showed that the transcript of EsLRRop1 in thoracic ganglion and eyestalk up-regulated after being challenged with S. aureus, while it decreased post injection with V. parahaemolyticus. The transcript of EsLRRop1 in hemocytes up-regulated sharply at 3 h and decreased at 12 h and 24 h after being challenged with V. parahaemolyticus, while it decreased at 12 h and 24 h post injection with S. aureus. The recombinant protein of EsLRRop1 (His-EsLRRop1) displayed binding activities to V. alginolyticus, V. harveyi, V. parahaemolyticus, S. aureus, Corynebacterium glutamicum and Micrococcus lysodeikticus as well as lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, the His-EsLRRop1 exhibited inhibitory activity against V. parahaemolyticus and V. harveyi with minimum inhibitory concentration (MIC) of 3.57-7.14 µM and 7.14-14.28 µM, respectively. These results provide theoretical basis for the application of EsLRRop1 in inhibiting bacteria in aquaculture practice.


Assuntos
Braquiúros , Staphylococcus aureus , Animais , Leucina/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Repetições Ricas em Leucina , Clonagem Molecular , Sequência de Aminoácidos , Braquiúros/metabolismo , Filogenia , Hemócitos , Proteínas de Artrópodes/genética , Imunidade Inata
3.
Artigo em Inglês | MEDLINE | ID: mdl-38122925

RESUMO

Crustacean hyperglycemic hormone (CHH) superfamily peptides constitute a group of neurohormones, including the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), which reportedly play an essential role in regulating various biological activities by binding to their receptors in crustaceans. Although bioinformatics analyses have identified G protein-coupled receptors (GPCRs) as potential CHH receptors, no validation through binding experiments has been carried out. This study employed a eukaryotic expression system, HEK293T cell transient transfection, and ligand-receptor interaction tests to identify the GPCRs of CHHs in the mud crab Scylla paramamosain. We found that four GPCRs (Sp-GPCR-A34-A37) were activated by their corresponding CHHs (Sp-CHH1-v1, Sp-MIH, Sp-VIH) in a dose-dependent manner. Of these, Sp-GPCR-A34 was exclusively activated by Sp-VIH; Sp-GPCR-A35 was activated by Sp-CHH1-v1 and Sp-VIH, respectively; Sp-GPCR-A36 was activated by Sp-CHH1-v1 and Sp-MIH; Sp-GPCR-A37 was exclusively activated by Sp-MIH. The half-maximal effective concentration (EC50) values for all CHHs/GPCRs pairs (both Ca2+ and cAMP signaling) were in the nanomolar range. Overall, our study provided hitherto undocumented evidence of the presence of G protein-coupled receptors of CHH in crustaceans, providing the foothold for further studies on the signaling pathways of CHHs and their corresponding GPCRs.


Assuntos
Braquiúros , Hormônios de Invertebrado , Humanos , Animais , Braquiúros/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Proteínas de Transporte/metabolismo , Hormônios de Invertebrado/genética , Hormônios de Invertebrado/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo
4.
Fish Shellfish Immunol ; 133: 108536, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36639068

RESUMO

Heat shock protein 40 (HSP40) is a kind of molecular chaperone involved in various immune responses. However, the exact roles of HSP40 in immune defense against bacteria remain largely unclear. In this study, the activation function of a type Ⅰ HSP40 from Portunus trituberculatus (PtHSP40-Ⅰ) in the TLR pathway was investigated. The results showed that PtHSP40-Ⅰ can bind to lipopolysaccharide (LPS) and peptidoglycan (PGN). The PtHSP40-Ⅰ also exhibited binding activity toward the extracellular leucine-rich repeat (LRR) domain of Toll-like receptor (TLR). Moreover, the PtHSP40-Ⅰ could promote the transcription factor Dorsal translocated from cytoplasm into the nucleus in hemocytes and participated in regulating the expression of anti-lipopolysaccharide factor (ALF) and crustin. These findings provided insights into the activation mechanisms of TLR pathway mediated by HSP40 and offered basic theory of disease control in P. trituberculatus aquaculture.


Assuntos
Braquiúros , Proteínas de Choque Térmico HSP40 , Animais , Sequência de Aminoácidos , Sequência de Bases , Alinhamento de Sequência , Proteínas de Choque Térmico HSP40/genética , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Filogenia
5.
Fish Shellfish Immunol ; 134: 108592, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746226

RESUMO

The Chinese mitten crab, Eriocheir sinensis, is a vital freshwater aquaculture species in China, however, is also facing various crab disease threats. In the present study, we identify three novel variable lymphocyte receptor-like (VLR-like) genes-VLR-like1, VLR-like3 and VLR-like4-from E. sinensis, which play vital roles in adaptive immune system of agnathan vertebrates. The bacterial challenge, bacterial binding and antibacterial-activity experiments were applied to study immune functions of VLR-likes, and the transcriptomic data from previous E. sinensis bacterial challenge experiments were analyzed to speculate the possible signaling pathway. VLR-like1 and VLR-like4 can respond to Staphylococcus aureus challenge and inhibit S. aureus specifically. VLR-like1 and VLR-like4 possess broad-spectrum bacteria-binding ability whereas VLR-like3 do not. VLR-likes in E. sinensis could associate with the Toll-like receptor (TLR) signaling pathway. The above results suggest that VLR-likes defend against bacteria invasion though exerting anti-bacteria activity, and probably connect with the TLR signaling pathway. Furthermore, studying the immune functions of these VLR-likes will provide a new insight into the disease control strategy of crustacean culture.


Assuntos
Proteínas de Artrópodes , Braquiúros , Braquiúros/imunologia , Braquiúros/microbiologia , Proteínas de Artrópodes/imunologia , Transcriptoma/imunologia , Staphylococcus aureus/fisiologia
6.
Fish Shellfish Immunol ; 129: 170-181, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057429

RESUMO

A meticulous understanding of the immune characteristics of aquaculture animals is the basis for developing precise disease prevention and control strategies. In this study, four novel C-type lectins (PtCTL-5, PtCTL-6, PtCTL-7 and PtCTL-8) including a single carbohydrate-recognition domain (CRD), and four novel crustins (Ptcrustin-1, Ptcrustin-2, Ptcrustin-3 and Ptcrustin-4) with a single whey acidic protein (WAP) domain were identified from the swimming crab Portunus trituberculatus. Tissue distribution analysis indicated that most of the target genes were predominantly expressed in the hepatopancreas in all examined tissues, except for Ptcrustin-1 which were mainly expressed in the gills. Our results showed that the eight genes displayed various transcriptional profiles across different tissues. In hemocytes, the PtCTL-7 responded quickly to Vibrio alginolyticus and exhibited much more strongly up-regulation than other three PtCTLs. The Ptcrustin-1 rapidly responded to V. alginolyticus within 3 h in all the three tested tissues. Furthermore, recombinant proteins of PtCTL-5 and PtCTL-8 were successfully obtained, and both of them displayed bacterial binding activities toward V. alginolyticus, V. harveyi and Staphylococcus aureus, and only showed antibacterial activity against V. harveyi. These findings provided new insights into the diverse immune response of P. trituberculatus and laid theoretical foundations for the development of precise disease prevention and control strategies in P. trituberculatus farming. Moreover, the specific anti-V. harveyi activities exhibited by rPtCTL-5 and rPtCTL-8 suggested their promising application prospects for controlling diseases caused by V. harveyi.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Braquiúros/imunologia , Lectinas Tipo C/fisiologia , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Aquicultura , Proteínas de Artrópodes/química , Sequência de Bases , Braquiúros/classificação , Braquiúros/genética , Carboidratos/isolamento & purificação , Imunidade Inata/genética , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Filogenia , Proteínas Recombinantes/genética , Alinhamento de Sequência
7.
Fish Shellfish Immunol ; 98: 201-209, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923564

RESUMO

Variable lymphocyte receptors (VLRs) play an important role via their antigen-special reorganization in jawless vertebrates (agnathans) adaptive immune response. In the present study, the open reading frame (ORF) of Eriocheir sinensis VLRA (designated as EsVLRA) was identified. EsVLRA comprised a 799-amino-acid polypeptide with one LRR_NT domain, thirteen LRR domains and one LRR_CT domain, which showed a high domain consistency of the VLR genes in lamprey (Petromyzon marinus). The transcript of EsVLRA was detected in all examined tissues with the highest level detected in hepatopancreas. Notably, the expression of EsVLRA in hepatopancreas, gonads, gill and intestine of male crabs was significantly higher than that in females. The recombinant EsVLRA exhibited strong bacteria-binding activity rather than antibacterial activity, suggesting its crucial role in immune recognition. Furthermore, 6 h earlier response and a significantly higher peak of EsVLRA mRNA expression was observed after challenge with live Vibrio parahaemolyticus (240.6-fold, P < 0.01, crabs receive secondary challenge after V. parahaemolyticus vaccine to the carbs only receive twice PBS injection, N = 6), compared with those only received first injection with formalin-inactivated V. parahaemolyticus (39.7-fold, P < 0.01, challenge 6 h to vaccination 12 h). The findings of this study together demonstrated that EsVLRA plays an important role in the immune system of E. sinensis, serving as a pattern recognition receptor and involving in the immune priming.


Assuntos
Proteínas de Artrópodes/imunologia , Vacinas Bacterianas/imunologia , Braquiúros/imunologia , Receptores de Antígenos/imunologia , Vibrio parahaemolyticus/imunologia , Imunidade Adaptativa , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Braquiúros/microbiologia , Clonagem Molecular , Feminino , Hemócitos/imunologia , Hemócitos/metabolismo , Imunização Secundária , Masculino , Modelos Moleculares , Filogenia , Receptores de Antígenos/química , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Distribuição Tecidual
8.
Fish Shellfish Immunol ; 89: 448-457, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30974220

RESUMO

Mannose-binding lectin (MBL) is a pattern recognition receptor (PRR) that plays an important role in the innate immune response. In this study, a novel mannose-binding lectin was cloned from the swimmimg crab Portunus trituberculatus (designated as PtMBL). The complete cDNA of PtMBL gene was 1208 bp in length with an open reading frame (ORF) of 732 bp that encoded 244 amino acid proteins. PtMBL shared lower amino acid similarity with other MBLs, yet it contained the conserved carbohydrate-recognition domain (CRD) with QPD motif and was clearly member of the collectin family. PtMBL transcripts were mainly detected in eyestalk and gill with sexually dimorphic expression. The temporal expression of PtMBL in hemocytes showed different activation times after challenged with Vibrio alginolyticus, Micrococcus luteus and Pichia pastoris. The recombinant PtMBL protein revealed antimicrobial activity against the tested Gram-negative and Gram-positive bacteria. It could also bind and agglutinate (Ca2+-dependent) both bacteria and yeast. Furthermore, the agglutinating activity could be inhibited by both d-galactose and d-mannose, suggesting the broader pathogen-associated molecular patterns (PAMPs) recognition spectrum of PtMBL. These results together indicate that PtMBL could serve as not only a PRR in immune recognition but also a potential antibacterial protein in the innate immune response of crab.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Masculino , Lectina de Ligação a Manose/química , Micrococcus luteus/fisiologia , Filogenia , Pichia/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Vibrio alginolyticus/fisiologia
9.
Fish Shellfish Immunol ; 89: 574-585, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30995541

RESUMO

Alpha-2 macroglobulin (A2M) is a ubiquitous protease inhibitor involved in the innate host defense system. Herein, two distinct A2M genes (designated as PtA2M-1 and PtA2M-2, respectively) were isolated from the swimming crab Portunus trituberculatus. PtA2M-1 and PtA2M-2 encoded proteins with 1541 or 1516 amino acids, respectively, containing the typically functional domains of A2M. Unlike highly expressed in hemocytes of most arthropods, PtA2M-1 and PtA2M-2 were predominantly detected in gill, eyestalk and digestive tracks. During the embryonic stages, PtA2Ms were found to be expressed most highly in fertilized eggs, suggesting their maternal origin. After challenged with Vibrio alginolyticus, the transcripts of PtA2Ms showed similar time-dependent response expression pattern, while PtA2M-1 was more sensitive to Micrococcus luteus and Pichia pastoris infection than PtA2M-2. Knockdown of PtA2M-1 or PtA2M-2 could significantly enhance the expression of prophenoloxidase (proPO) associated genes (PtproPO and PtPPAF) and serine protease related genes (PtcSP1-3 and PtSPH), however, PtLSZ and the phagocytosis-related genes (PtMyosin and PtRab5) were effectively inhibited. These results were further supported by the PO and lysozyme activities in hemolymph of the PtA2M-1- or PtA2M-2-silenced crabs. In addition, PtA2M-1 and PtA2M-2 could regulate the expression of antimicrobial peptide (AMP) genes (PtALF1-3, PtCrustin1 and PtCrustin3) through the Toll and NF-κB pathways. Our findings together suggest that PtA2Ms might function in crab host defense via regulating the proPO system, phagocytosis and the expression of AMP genes.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , alfa 2-Macroglobulinas Associadas à Gravidez/genética , alfa 2-Macroglobulinas Associadas à Gravidez/imunologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Braquiúros/enzimologia , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Perfilação da Expressão Gênica , Fagocitose/genética , Filogenia , alfa 2-Macroglobulinas Associadas à Gravidez/química , Alinhamento de Sequência
10.
Fish Shellfish Immunol ; 89: 98-107, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851452

RESUMO

Clip domain serine proteases (cSPs), a family of multifunctional proteins, play a crucial role in innate immune system. Here, we report the functional characterization of two clip domain serine proteases (PtcSP1 and PtcSP3) from the swimming crab Portunus trituberculatus. The recombinant N-terminal clip domains and the C-terminal SP-like domains of PtcSP1 and PtcSP3 were expressed in Escherichia coli system, and assayed for various biological functions: protease activity, antimicrobial activity, bacterial clearance and microbial-binding activity. The recombinant SP-like domains of PtcSP1 and PtcSP3 exhibited trypsin-like protease activity, while their recombinant clip domains showed strong antibacterial activity and could bind to bacteria and yeast, suggesting the potential roles of PtcSP1 and PtcSP3 in immune defense and pattern recognition. Unlike PtcSP3, PtcSP1 revealed the opsonic activity as shown by a higher bacterial clearance rate of Vibrio alginolyticus coated with the combination of the recombinant clip domain and SP-like domain of PtcSP1 as compared with V. alginolyticus only. Knockdown of PtcSP1 or PtcSP3 by RNA interference resulted in a significant decrease of total phenoloxidase (PO) activity in crab, suggesting that PtcSP1 and PtcSP3 are involved in the proPO system. In addition, suppression of PtcSP1 or PtcSP3 changed the expression of PtALFs and complement-like components. All these findings suggest that PtcSP1 and PtcSP3 are multifunctional immune molecules and perform different protective functions in crab defense.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Serina Proteases/genética , Serina Proteases/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Serina Proteases/química , Vibrio alginolyticus
11.
Fish Shellfish Immunol ; 84: 970-978, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30395995

RESUMO

The receptor for the globular head of complement component C1q, gC1qR, is a multifunctional and multiligand binding protein with a crucial role in host defense. In the present study, a full-length cDNA sequence of a gC1qR homolog (PtgC1qR) in Portunus trituberculatus was identified. PtgC1qR was a 268-amino-acid polypeptide with a conserved MAM33 domain and a mitochondrial targeting sequence in the first 56 amino acids. The transcripts of PtgC1qR were detected in all examined tissues with the highest level detected in the hepatopancreas. Compared with other early embryonic stages, PtgC1qR was highly expressed in the fertilized eggs and embryos at the cleavage stage, which suggest PtgC1qR may be a maternal gene. The transcripts of PtgC1qR in hemocytes exhibited time-dependent response expression pattern after challenged with bacteria (Vibrio alginolyticus, Micrococcus luteus) and fungi (Pichia pastoris). Moreover, the recombinant PtgC1qR (rPtgC1qR) exhibited strong antibacterial activity and microbial-binding activity, suggesting its crucial role in immune defense and recognition. Further phenoloxidase (PO) assay showed that rPtgC1qR could suppress the crab PO activity in vitro in a dose-dependent manner, and it could result in nearly 100% inhibition of PO activity under the concentration of 11.65 µM. Knockdown of PtgC1qR could significantly enhance the expression of serine protease related genes (PtSP1-3 and PtSPH), proPO-associated genes (PtproPO and PtPPAF) and C3-like genes (Ptα2M1 and PtTEP). However, the phagocytosis related genes (PtMyosin, PtRab5 and PtArp) and Ptα2M2 were significantly down-regulated in the PtgC1qR silenced crabs. These findings together demonstrate that PtgC1qR might function in crab immune response via its antibacterial activity, immune recognition or regulating the proPO system, complement pathway and phagocytosis.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Complemento C1q/genética , Complemento C1q/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Complemento C1q/química , Perfilação da Expressão Gênica , Micrococcus luteus/fisiologia , Filogenia , Pichia/fisiologia , Vibrio alginolyticus/fisiologia
12.
Fish Shellfish Immunol ; 66: 307-316, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28522421

RESUMO

Clip domain serine proteases (clip-SPs) play critical roles in various immune responses in arthropods, such as hemolymph coagulation, antimicrobial peptide (AMP) synthesis, cell adhesion and melanization. In the present study, we report the molecular and functional characterization of a clip domain serine protease (PtcSP2) from the swimming crab Portunus trituberculatus. The N-terminal clip domain and the C-terminal SP-like domain of PtcSP2 were expressed in Escherichia coli system, and assayed for their activities. Sequence similarity and phylogenetic analysis revealed that PtcSP2 may belong to the chymotrypsin family, which was confirmed by protease activity assay of the recombinant SP-like domain. The clip domain of PtcSP2 exhibited strong antibacterial activity and microbial-binding activity, suggesting the potential role in immune defense and recognition. Knockdown of PtcSP2 by RNA interference could significantly reduce PtcSP2 transcript levels, but neither decrease the total phenoloxidase (PO) activity in crab nor significantly alter the expression levels of serine protease inhibitors PtPLC and PtSerpin. These results indicate that PtcSP2 is not involved in the proPO system. However, suppression of PtcSP2 led to a significant change in the expression of AMP genes PtALFs and PtCrustin but not PtALF5. All these findings suggest that PtcSP2 is a multifunctional chymotrypsin-like serine protease and may participate in crab innate immunity by its antibacterial activity, immune recognition or regulation of AMP expression.


Assuntos
Braquiúros/enzimologia , Quimases/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Braquiúros/classificação , Braquiúros/genética , Braquiúros/imunologia , Catecol Oxidase/genética , Catecol Oxidase/imunologia , Quimases/química , Quimases/genética , Precursores Enzimáticos/genética , Precursores Enzimáticos/imunologia , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/imunologia , Filogenia , Pichia/crescimento & desenvolvimento , Pichia/imunologia , Alinhamento de Sequência
13.
Fish Shellfish Immunol ; 43(1): 36-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542376

RESUMO

Pacifastin-related inhibitor is a new family of serine protease inhibitors that regulate the proteolytic cascade in multiple biological processes. Contrary to the knowledge on the structure and inhibitory mechanism of pacifastin-like members in locust, very little is known about their functions. Here, we report the inhibitory activities in relation to the structural characteristics of pacifastin light chain (PtPLC) gene identified from the swimming crab Portunus trituberculatus. The mature PtPLC and five PLD-related domains with critical residues were expressed in Escherichia coli, and assayed for their activities. The recombinant PtPLC (rPtPLC) displayed inhibitory activities against trypsin and chymotrypsin in a dose dependent manner, with a preference for trypsin. Except for rPtPLC-D4, the other four rPtPLC-related domains could inhibit at least one of serine proteases. The enzyme specificity of PtPLC domains generally corresponded to the nature of the P1 residue at the reactive site. rPtPLC was able to inhibit the growth of Gram-negative bacteria Vibrio alginolyticus and Pseudomonas aeruginosa, but not the Gram-positive bacterium and fungus tested. Further phenoloxidase (PO) assay showed the rPtPLC could depress the crab proPO system activation in vitro, and lead to 72.8% inhibition of PO activity at the concentration of 9.11 µM. It also suppressed proPO activation induced by rPtcSP and rPtSPH1. As the first functional study of the recombinant PLC protein in crustaceans, the present results together indicate that PtPLC functions in the crab immune response possibly via inhibiting bacterial growth and regulating the proPO system.


Assuntos
Proteínas de Artrópodes/genética , Braquiúros/genética , Braquiúros/microbiologia , Catecol Oxidase/genética , Precursores Enzimáticos/genética , Regulação da Expressão Gênica , Proteínas/genética , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Braquiúros/imunologia , Braquiúros/metabolismo , Catecol Oxidase/metabolismo , Clonagem Molecular , Precursores Enzimáticos/metabolismo , Escherichia coli/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/fisiologia , Micrococcus luteus/fisiologia , Pichia/fisiologia , Proteínas/química , Proteínas/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Vibrio alginolyticus/fisiologia
14.
Fish Shellfish Immunol ; 39(2): 365-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24861890

RESUMO

Serpin or serine protease inhibitor is the largest family of protease inhibitors involved in many innate immune pathways, particularly the prophenoloxidase (proPO) activating system in arthropod. Here, we report the molecular and functional characterization of PtSerpin identified from the swimming crab Portunus trituberculatus. The genomic sequence encoding mature peptide of PtSerpin gene contained two exons of 84 and 1098 bp separated by one intron of 111 bp. The recombinant PtSerpin (rPtSerpin) with a predicted size of 44 kDa was expressed in Escherichia coli system, purified and assayed for its activities. The rPtSerpin exhibited inhibitory activity against trypsin in a dose-dependent manner, but did not affect chymotrypsin, which could define a role for PtSerpin as a trypsin inhibitor. The rPtSerpin could inhibit the growth of Gram-negative bacterium Vibrio alginolyticus, but not the tested Gram-positive bacterium and fungus. Further phenoloxidase (PO) assay showed PO activity was dramatically increased in hemocyte lysate supernatant of P. trituberculatus upon bacterial challenge. The rPtSerpin could depress the crab proPO system activation in vitro, and it could lead to 100% inhibition of PO activity under the concentration of 8.62 µM. Moreover, the rPtSerpin was able to inhibit the PO activity induced by rPtcSP and rPtSPH1. These results together indicate that PtSerpin is a potential trypsin inhibitor and may participate in crab innate immunity by the inhibition of bacterial growth and the regulation of proPO system.


Assuntos
Antibacterianos/farmacologia , Braquiúros/química , Catecol Oxidase/metabolismo , Ativação Enzimática/efeitos dos fármacos , Precursores Enzimáticos/metabolismo , Serpinas/farmacologia , Inibidores da Tripsina/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Braquiúros/imunologia , Primers do DNA/genética , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Componentes do Gene , Dados de Sequência Molecular , Análise de Sequência de DNA , Serpinas/análise , Serpinas/genética , Vibrio alginolyticus/efeitos dos fármacos , Vibrio alginolyticus/crescimento & desenvolvimento
15.
Artigo em Inglês | MEDLINE | ID: mdl-38935995

RESUMO

Salinity acclimatization refers to the physiological and behavioral adjustments made by crustaceans to adapt to varying salinity environments. The eyestalk, a neuroendocrine organ in crustaceans, plays a crucial role in salinity acclimatization. To elucidate the molecular mechanisms underlying eyestalk involvement in mud crab (Scylla paramamosain) acclimatization, we employed RNA-seq technology to analyze transcriptomic changes in the eyestalk under low (5 ppt) and standard (23 ppt) salinity conditions. This analysis revealed 5431 differentially expressed genes (DEGs), with 2372 upregulated and 3059 downregulated. Notably, these DEGs were enriched in crucial biological pathways like metabolism, osmoregulation, and signal transduction. To validate the RNA-seq data, we further analyzed 15 DEGs of interest using qRT-PCR. Our results suggest a multifaceted role for the eyestalk: maintaining energy homeostasis, regulating hormone synthesis and release, PKA activity, and downstream signaling, and ensuring proper ion and osmotic balance. Furthermore, our findings indicate that the crustacean hyperglycemic hormone (CHH) may function as a key regulator, modulating carbonic anhydrase expression through the activation of the PKA signaling pathway, thereby influencing cellular osmoregulation, and associated metabolic processes. Overall, our study provides valuable insights into unraveling the molecular mechanisms of mud crab acclimatization to low salinity environments.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38070330

RESUMO

In the present study, BGISEQ-500 RNA-Seq technology was adopted to investigate how Scylla paramamosain adapts to salinity tolerance at the molecular level and explores changes in gene expression linked to salinity adaptation following exposure to both low salinity (5 ‰) and standard salinity (23 ‰) conditions. A total of 1100 and 520 differentially expressed genes (DEGs) were identified in the anterior and posterior gills, respectively, and their corresponding expression patterns were visualized in volcano plots and a heatmap. Further analysis highlighted significant enrichment of well-established gene functional categories and signaling pathways, including those what associated with cellular stress response, ion transport, energy metabolism, amino acid metabolism, H2O transport, and physiological stress compensation. We also selected key DEGs within the anterior and posterior gills that encode pivotal stress adaptation and tolerance modulators, including AQP, ABCA1, HSP 10, A35, CAg, NKA, VPA, CAc, and SPS. Interestingly, A35 in the gills might regulate osmolality by binding CHH in response to low salinity stress or serve as a mechanism for energy compensation. Taken together, our findings elucidated the intricate molecular mechanism employed by S. paramamosain for salinity adaptation, which involved distinct gene expression patterns in the anterior and posterior gills. These findings provide the foothold for subsequent investigations into salinity-responsive candidate genes and contribute to a deeper understanding of S. paramamosain's adaptation mechanisms in low-salinity surroundings, which is crucial for the development of low-salinity species cultivation and the establishment of a robust culture model.


Assuntos
Braquiúros , Animais , Braquiúros/fisiologia , Salinidade , Brânquias/metabolismo , Perfilação da Expressão Gênica , Expressão Gênica
17.
Int J Biol Macromol ; 270(Pt 1): 132242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729487

RESUMO

Vascular endothelial growth factor (VEGF) and VEGF reporter (VEGFR) are essential molecules in VEGF signalling pathway. Although the functions of VEGF and VEGFR have been well reported in vertebrates, their functions are still poorly understood in invertebrates. In this study, the open reading frame sequences of EsVEGF1 and EsVEGFR4 were cloned from Eriocheir sinensis, and their corresponding proteins shared typical structure characteristics with their counterparts in other species. EsVEGF1 were predominantly expressed in hepatopancreas and muscle while EsVEGFR4 mainly expressed in hemocytes and intestine. The expression levels of EsVEGF1 in hemocytes were rapidly induced by Staphylococcus aureus and Vibrio parahaemolyticus, and it also increased rapidly in hepatopancreas after being challenged with V. parahaemolyticus. The expression levels of EsVEGFR4 only increased in hepatopancreas of crabs injected with S. aureus. The extracellular immunoglobulin domain of EsVEGFR4 could bind with Gram-negative and Gram-positive bacteria as well as lipopolysaccharide and peptidoglycan. EsVEGF1 could act as the ligand for EsVEGFR4 and Toll-like receptor and regulate the expression of crustins and lysozyme with a tissue-specific manner, while have no regulatory function on that of anti-lipopolysaccharide factors. This study will provide new insights into the immune defense mechanisms mediated by VEGF and VEGFR in crustaceans.


Assuntos
Braquiúros , Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular , Animais , Braquiúros/metabolismo , Braquiúros/microbiologia , Braquiúros/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/química , Sequência de Aminoácidos , Staphylococcus aureus , Regulação da Expressão Gênica , Vibrio parahaemolyticus , Filogenia , Hepatopâncreas/metabolismo , Hemócitos/metabolismo
18.
Heliyon ; 10(3): e25556, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356600

RESUMO

As an important marine aquaculture species, the mud crab (Scylla paramamosain) is a good candidate for studying the osmoregulatory mechanism of crustaceans. While previous studies have focused on the osmoregulatory function of the gills, this study aims to explore the osmoregulatory function of the antennal glands. By the comparative transcriptomic analysis, we found the pathways of ion regulation including "proximal tubule bicarbonate reclamation" and "mineral absorption" were activated in the antennal glands of the crabs long-term dwelling in low salinity. The enhanced ionic reabsorption was associated with up-regulated ion transport genes such as NKA, CA-c, VPA, and NHE, and with energy metabolism genes such as MDH, SLC25, and PEPCK. The upregulation of NKA and CA-c was also verified by the increased enzyme activity. The lowered osmolality and ion concentration of the hemolymph and the enlarged labyrinth lumen and hemolymph capillary inside the antennal glands indicated the infiltration of external water and the responsively increase of urine excretion, which explained the requirement of enhanced ionic reabsorption. To further confirm these findings, we examined the change of gene expression, enzyme activity, internal ion concentration, and external ion concentration during a 96 h low salinity challenge with seven intervals. The results were basically consistent with the results as shown in the long-term low salinity adaptation. The present study provides valuable information on the osmoregulatory function of the antennal glands of S. paramamosain. The implication of this study in marine aquaculture is that it provides valuable information on the osmoregulatory mechanism of mud crabs, which can be used to improve their culture conditions and enhance their tolerance to salinity stress. The identified genes and pathways involved in osmoregulation can also be potential targets for genetic selection and breeding programs to develop more resilient mud crab strains for aquaculture.

19.
Fish Shellfish Immunol ; 34(6): 1560-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23567857

RESUMO

Anti-lipopolysaccharide factor (ALF) is an important antimicrobial peptide (AMP) that can bind and neutralize major component of Gram-negative bacteria cell wall, lipopolysaccharide (LPS). Seven isoforms of anti-lipopolysaccharide factors (PtALF1-7) were previously identified from the swimming crab Portunus trituberculatus in our laboratory. Here, polymorphisms of PtALF1-7 were detected and their association with resistance/susceptibility to Vibrio alginolyticus (a main Gram-negative bacteria causing high mortality in P. trituberculatus) were investigated. We identified 127, 96, 103, 53 and 158 single nucleotide polymorphisms (SNPs) in genomic fragments of PtALF1-3, PtALF4, PtALF5, PtALF6 and PtALF7, respectively. Among them, totally sixteen SNPs were significantly associated with resistance/susceptibility to V. alginolyticus (P < 0.05). Of these sixteen SNPs, most were located in introns and noncoding exons, while two synonymous SNPs and one nonsynonymous SNP were in coding exons. Additionally, simple sequence repeats (SSRs) were only identified in introns and noncoding exons of PtALF4, PtALF5 and PtALF7. Although no significant difference of allele frequencies was found, these SSRs had different polymorphic alleles according to the repeat number between susceptible and resistant stocks. After further confirmation, polymorphisms investigated here might be applied as potential molecular markers for future selection of resistant strains to diseases caused by Gram-negative bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Artrópodes/genética , Braquiúros/genética , Braquiúros/imunologia , Imunidade Inata , Vibrio alginolyticus/fisiologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
Fish Shellfish Immunol ; 34(2): 652-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23261507

RESUMO

Anti-lipopolysaccharide factors (ALFs), as the potent antimicrobial peptides, are becoming predominant candidates for potential therapeutic agents of bacterial and viral diseases. In this study, a unique isoform of ALF (PtALF7) was identified from hemocytes cDNA library of the swimming crab Portunus trituberculatus. The PtALF7 cDNA contained an open reading frame (ORF) of 372 bp encoding 123 amino acids. The deduced peptide of PtALF7 shared high similarity with our previously reported PtALF1-3 but low with PtALF4-6. The PtALF7 gene consisted of three exons interrupted by two introns, and was clearly transcribed from different genomic loci compared with other PtALF isoforms. Totally 128 SNPs including 12 in coding region and 116 in noncoding region were detected in PtALF7 gene by direct sequencing of 20 samples. The mRNA expression of PtALF7 transcript was primarily observed in hemocytes followed by gill and eyestalk, but barely detectable in hepatopancreas. After challenge with Vibrio alginolyticus, a main pathogen causing high mortality in P. trituberculatus, the PtALF7 transcript in hemocytes showed a clear time-dependent response expression pattern with obvious decrease at 6 h and significant increase at 24 h. The recombinant PtALF7 protein exhibited antimicrobial activity against the test Gram-negative and Gram-positive bacteria, but did not inhibit the growth of fungus Pichia pastoris. These results together indicate a potential involvement for PtALF7 in the innate immune response of P. trituberculatus.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Artrópodes/genética , Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/imunologia , Vibrio alginolyticus/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Sequência de Bases , Clonagem Molecular , Componentes do Gene , Biblioteca Gênica , Genoma/genética , Hemócitos/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de DNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA