Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BMC Vet Res ; 20(1): 63, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38388939

RESUMO

BACKGROUND: The combined application of predatory fungi and antiparasitic drugs is a sustainable approach for the integrated control of animal gastrointestinal (GI) parasites. However, literature addressing the possible interference of antiparasitic drugs on the performance of these fungi is still scarce. This research aimed to assess the in vitro susceptibility of six native coccidicidal fungi isolates of the species Mucor circinelloides and one Mucor lusitanicus isolate to several antiparasitic drugs commonly used to treat GI parasites' infections in birds, namely anthelminthics such as Albendazole, Fenbendazole, Levamisole and Ivermectin, and anticoccidials such as Lasalocid, Amprolium and Toltrazuril (drug concentrations of 0.0078-4 µg/mL), using 96-well microplates filled with RPMI 1640 medium, and also on Sabouraud Agar (SA). RESULTS: This research revealed that the exposition of all Mucor isolates to the tested anthelminthic and anticoccidial drug concentrations did not inhibit their growth. Fungal growth was recorded in RPMI medium, after 48 h of drug exposure, as well as on SA medium after exposure to the maximum drug concentration. CONCLUSIONS: Preliminary findings from this research suggest the potential compatibility of these Mucor isolates with antiparasitic drugs for the integrated control of avian intestinal parasites. However, further in vitro and in vivo studies are needed to confirm this hypothesis.


Assuntos
Antiparasitários , Mucor , Animais , Antiparasitários/farmacologia , Ivermectina/farmacologia , Albendazol
2.
Vet Dermatol ; 35(6): 726-735, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39210732

RESUMO

BACKGROUND: Otitis externa (OE) is one of the most frequently diagnosed dermatological diseases in dogs, having a multifactorial aetiology. Among the bacterial agents associated with canine OE, Pseudomonas aeruginosa is of special concern owing to its frequent multidrug resistance profile and ability to form biofilms related to the infection's chronicity and recurrence. OBJECTIVES: The main objective of this study was to evaluate and compare the antibiofilm activity of two innovative antimicrobials-an otological gel containing a synthetic antimicrobial peptide and Lavandula angustifolia essential oil-with gentamicin (a conventional antibiotic) using biofilm-producing P. aeruginosa isolates obtained from dogs with OE. MATERIALS AND METHODS: The biofilm eradication capacity of gentamicin, otological gel and lavender oil was determined against a collection of 12 P. aeruginosa biofilm-producers among 35 clinical isolates obtained from the ear canals of dogs with OE. Also, the antimicrobial activity of the otological gel against P. aeruginosa biofilms was assessed in an in vitro model of dog cerumen. RESULTS: Lavender oil showed the best effectiveness after 30 min of contact, eradicating 58.3% (seven of 12) of the isolates, and gentamicin showed full eradication (12 of 12) after 24 h. The otological gel acted more slowly than the lavender oil; yet at 24 h, the antibiofilm capacity of both compounds was similar, with no significant difference between them. It also was found that triglycerides from synthetic cerumen earwax had antipseudomonal activity and, when combined with the otological gel, led to the full eradication of P. aeruginosa. CONCLUSIONS AND CLINICAL RELEVANCE: The results of this in vitro study indicate that lavender oil and the otological gel may be effective topical treatments for canine OE promoted by P. aeruginosa biofilm-producers, as alternatives to gentamicin.


Assuntos
Antibacterianos , Biofilmes , Gentamicinas , Lavandula , Óleos Voláteis , Otite Externa , Óleos de Plantas , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Gentamicinas/farmacologia , Gentamicinas/administração & dosagem , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem , Cães , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Antibacterianos/farmacologia , Otite Externa/veterinária , Otite Externa/tratamento farmacológico , Otite Externa/microbiologia , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia , Infecções por Pseudomonas/veterinária , Infecções por Pseudomonas/tratamento farmacológico , Géis , Testes de Sensibilidade Microbiana
3.
Molecules ; 29(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39407523

RESUMO

Elysia crispata (Sacoglossa, Gastropoda) is a tropical sea slug known for its ability to incorporate functional chloroplasts from a variety of green macroalgae, a phenomenon termed kleptoplasty. This sea slug, amenable to laboratory cultivation, produces mucus, a viscous secretion that serves diverse purposes including protection, locomotion, and reproduction. In this study, we profiled the antimicrobial, antioxidant, and anti-inflammatory activities of the mucus of this sea slug. Results revealed inhibitory activity against several bacterial strains, more pronounced for Gram-negative bacteria. Particularly interesting was the strong inhibitory effect against Pseudomonas aeruginosa, a bacterial species classified by the WHO as a high-priority pathogen and associated with high-risk infections due to its frequent multidrug-resistant profile. Similar inhibitory effects were observed for the mucus native protein extracts, indicating that proteins present in the mucus contributed significantly to the antimicrobial activity. The mucus also showed both antioxidant and anti-inflammatory activities. The latter activities were associated with the low molecular weight (<10 kDa) fraction of the mucus rather than the native protein extracts. This study opens the way to further research on the biotechnological applications of the mucus secreted by this unique marine organism, particularly as an antimicrobial agent.


Assuntos
Anti-Infecciosos , Anti-Inflamatórios , Antioxidantes , Gastrópodes , Muco , Animais , Muco/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Gastrópodes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
4.
BMC Vet Res ; 19(1): 76, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291542

RESUMO

BACKGROUND: In dogs, the most frequently reported mycosis associated with Aspergillus spp. are respiratory infections. Systemic aspergillosis is uncommon, with reported cases been associated with several Aspergillus species. Aspergillus terreus species complex are ubiquitous organisms, unfrequently associated with local or systemic disease in animals and humans, and treatment of osteomyelitis caused by this species is usually unfavorable. CASE PRESENTATION: This case report describes the case of a 5-year-old dog, referred to the Veterinary Hospital of the Faculty of Veterinary Medicine of the University of Lisbon, Portugal, with a history of lameness of the right thoracic limb. Radiographs and CT scan revealed two different lesions on right humerus and radio, which were biopsied. The samples collected were submitted to cytological and histopathological evaluation and bacterial and mycological culture. Environmental samples, including of the surgery room and of the biopsy needle were also evaluated for the presence of fungi. Regarding biopsy samples, bacterial culture was negative, but mycological analysis originated a pure culture of a fungal species later identified as Aspergillus terreus by Sanger sequencing. Results were compatible with histopathologic examination, which revealed periosteal reaction and invasion of hyphae elements. Also, mycological analysis of both environmental samples evaluated were negative. The virulence profile of the fungal isolate was phenotypically characterized using specific media, allowing to reveal its ability to produce several enzymes involved in its pathogenicity, namely lipase, hemolysin and DNAse, corresponding to a Virulence Index (V. Index.) of 0.43. The patient was submitted to itraconazole therapy for 8 weeks. After 3 weeks, the patient showed significant clinical improvement, and after 6 weeks no radiographic signs were observed. CONCLUSIONS: Antifungal therapy with itraconazole can contribute to the remission of canine infections promoted by Aspergillus terreus complex with a relevant V. Index.


Assuntos
Doenças do Cão , Osteomielite , Humanos , Cães , Animais , Antifúngicos/uso terapêutico , Itraconazol/uso terapêutico , Aspergillus , Osteomielite/tratamento farmacológico , Osteomielite/veterinária , Doenças do Cão/tratamento farmacológico
5.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203579

RESUMO

Diabetic foot infections (DFIs) are frequently linked to diabetic-related morbidity and death because of the ineffectiveness of conventional antibiotics against multidrug-resistant bacteria. Pexiganan and nisin A are antimicrobial peptides (AMPs), and their application may complement conventional antibiotics in DFI treatment. A collagen 3D model, previously established to mimic a soft-tissue collagen matrix, was used to evaluate the antibacterial efficacy of a guar gum gel containing pexiganan and nisin alone and combined with three antimicrobials toward the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa isolated from infected foot ulcers. Antimicrobials and bacterial diffusion were confirmed by spot-on-lawn and bacterial growth by bacterial count (cfu/mL). Our main conclusion was that the dual-AMP biogel combined with gentamicin, clindamycin, or vancomycin was not able to significantly reduce bacterial growth or eradicate S. aureus and P. aeruginosa DFI isolates. We further reported an antagonism between dual-AMP and dual-AMP combined with antibiotics against S. aureus.


Assuntos
Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Polineuropatias , Dermatopatias , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pé Diabético/tratamento farmacológico , Staphylococcus aureus , Colágeno
6.
BMC Vet Res ; 16(1): 469, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267882

RESUMO

BACKGROUND: Periodontal disease (PD) in dogs is prompted by the establishment of a polymicrobial biofilm at the tooth surface and a subsequent host inflammatory response. Several strategies may be used for PD control, including dental hygiene home care procedures, like toothbrushing, special diet and chew toys that reduce dental plaque accumulation, or professional periodontal treatments. Aiming at PD control, a biogel composed by nisin and guar-gum was previously developed. This work aimed to establish an in vitro model mimicking the PD-associated biofilms and to evaluate the nisin-biogel inhibitory activity against this polymicrobial biofilm by determining its Minimum Biofilm Inhibitory (MBIC) and Eradication Concentrations (MBEC). Bacterial species tested included Neisseria zoodegmatis CCUG 52598T, Corynebacterium canis CCUG 58627T, Porphyromonas cangingivalis DSMZ VPB 4874, Peptostreptococcus canis CCUG 57081 and an Enterococcus faecalis isolate belonging to a collection of oral bacteria obtained from dogs with PD. Before establishing the biofilm, coaggregation between species was determined by optical density measurement after 2 and 24 hours. Nisin-biogel MBIC and MBEC values regarding the polymicrobial biofilm were determined using a modified version of the Calgary biofilm pin lid device, after confirming the presence of the five bacterial species by Fluorescent In Situ Hybridization. RESULTS: Only 40% of the bacterial dual suspensions were able to coaggregate at 2 hours, but all species tested exhibited a coaggregation percentage higher than 30% at 24 hours. It was possible to establish a 48 h polymicrobial biofilm model composed by the five bacterial species selected. This model was used to determine nisin-biogel MBIC (26.39 ± 5.89 µg/mL) and MBEC (62.5 ± 27.73 µg/mL) values. CONCLUSIONS: Our results showed that the nisin-biogel can inhibit and eradicate PD multispecies biofilms. As this in vitro model mimics an in vivo periodontal polymicrobial biofilm, our results reinforce the potential of the application of nisin-biogel for canine PD control.


Assuntos
Biofilmes/efeitos dos fármacos , Doenças do Cão/tratamento farmacológico , Nisina/farmacologia , Doenças Periodontais/veterinária , Animais , Antibacterianos/administração & dosagem , Cães , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Doenças Periodontais/tratamento farmacológico , Doenças Periodontais/microbiologia
7.
BMC Vet Res ; 14(1): 348, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30445957

RESUMO

BACKGROUND: Canine Distemper Virus (CDV) and Canine Parvovirus (CPV) lead to infections with high mortality rates in dogs. These viruses affect unvaccinated dogs or dogs with incomplete vaccination protocols. Vaccination plays an important role in reducing death rates, preventing clinical cases and controlling the spread of virus However, the efficacy of vaccination might be affected by different factors including vaccine scheduling and the neutralization of the vaccine targets by maternal antibodies. In face of these factors, the main goals of this study are (i) to investigate the antibody responses of puppies undergoing different primary vaccination protocols against CPV and CDV and (ii) to estimate the time until seroreversion in adult dogs unvaccinated for at least 3 years. RESULTS: Antibody protection against CDV and CPV was evaluated in a total of 20 dogs: 5 puppies that initiated immunization at 6 weeks after birth (group A), 8 animals that started vaccination between 8 and 12 weeks of age (group B), and 7 adult dogs that have not been vaccinated for at least 3 years (group C). Blood samples were collected from each animal, with 3 to 4 weeks apart. Antibody responses were measured using indirect ELISA. In the second immunization point, no significant differences were found between the seroconversion of groups A and B for each viral infection (p = 0.81 and 0.20 for CDV and CPV, respectively). In the third immunization, there was evidence for a shorter time to achieve a protective titer against CPV in group B when compared to group A (p = 0.015). Similar evidence was not found for CDV (p-value = 0.41). In Group C, the average time until seroveversion was estimated at 2.86 years and 7.63 years for CDV and CPV, respectively. CONCLUSION: Vaccine response to CDV and CPV is specific in each individual. Effective immune protection in primary vaccination depends mainly on the initial titer of maternal antibodies acquired by the neonate. Other factors such as environmental exposure, immunization schedules and immune system activity influence the duration of immunity in adult dogs. The variability found reinforces the need to determine individual humoral immunity levels in order to assess vaccine efficacy.


Assuntos
Vírus da Cinomose Canina/imunologia , Cinomose/imunologia , Doenças do Cão/imunologia , Imunidade Humoral , Infecções por Parvoviridae/veterinária , Parvovirus Canino/imunologia , Vacinas Virais/uso terapêutico , Animais , Anticorpos Antivirais/sangue , Cinomose/prevenção & controle , Doenças do Cão/prevenção & controle , Doenças do Cão/virologia , Cães , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Imunidade Humoral/imunologia , Masculino , Infecções por Parvoviridae/imunologia , Infecções por Parvoviridae/prevenção & controle , Projetos Piloto
8.
BMC Vet Res ; 14(1): 95, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540169

RESUMO

BACKGROUND: Most of surgical site infections (SSI) are caused by commensal and pathogenic agents from the patient's microbiota, which may include antibiotic resistant strains. Pre-surgical asepsis of the skin is one of the preventive measures performed to reduce SSI incidence and also antibiotic resistance dissemination. However, in veterinary medicine there is no agreement on which biocide is the most effective. The aim of this study was to evaluate the effectiveness of two pre-surgical skin asepsis protocols in dogs. A total of 46 animals were randomly assigned for an asepsis protocol with an aqueous solution of 7.5% povidone-iodine or with an alcoholic solution of 2% chlorhexidine. For each dog, two skin swab samples were collected at pre-asepsis and post-asepsis, for bacterial quantification by conventional techniques and isolation of methicillin-resistant species. RESULTS: Most samples collected at the post-asepsis did not present bacterial growth, both for the animals subjected to the povidone-iodine (74%) or to the chlorhexidine (70%) protocols. In only 9% of the cases a significant bacterial logarithmic reduction was not observed, indicating possible resistance to these agents. Also, the logarithmic reduction of the bacterial quantification from pre- and post-asepsis time, was not statistically different for povidone-iodine (6.51 ± 1.94 log10) and chlorhexidine (6.46 ± 2.62 log10) protocol. From the 39% pre-asepsis swabs which showed bacterial growth in MRSA modified chromogenic agar medium, only one isolate was identified as Staphylococcus aureus and one as S. epidermidis. False positives were mainly other staphylococci species, as well as Enterobacteriaceae. CONCLUSIONS: Pre-surgical skin asepsis protocols with povidone-iodine or chlorhexidine showed similar efficacy in the elimination of methicillin resistant bacteria and preventing surgical site infections in dogs undergoing surgery.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Clorexidina/uso terapêutico , Doenças do Cão/prevenção & controle , Etanol/uso terapêutico , Povidona-Iodo/uso terapêutico , Infecção da Ferida Cirúrgica/veterinária , Administração Cutânea , Animais , Anti-Infecciosos Locais/administração & dosagem , Clorexidina/administração & dosagem , Protocolos Clínicos , Cães/cirurgia , Etanol/administração & dosagem , Feminino , Masculino , Povidona-Iodo/administração & dosagem , Infecção da Ferida Cirúrgica/prevenção & controle
9.
BMC Vet Res ; 14(1): 375, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497466

RESUMO

BACKGROUND: Periodontal disease (PD) is caused by the development of a microbial biofilm (dental plaque) in the periodontium, affecting approximately 80% of dogs. Several bacterial species present in the canine oral cavity can be implicated in the development of this disease, including Enterococcus spp. To decrease antibiotic administration, a possible control strategy for dog's enterococcal PD may involve the use of the antimicrobial peptide (AMP) nisin. Nisin's inhibitory activity was evaluated against a collection of previously characterized enterococci obtained from the oral cavity of dogs with PD (n = 20), as well as the potential of a guar-gum gel and a veterinary toothpaste as topical delivery systems for this AMP. The Minimum Inhibitory (MIC) and Bactericidal Concentrations (MBC) and the Minimum Biofilm Eradication (MBEC) and Inhibitory Concentrations (MBIC) were determined for nisin and for the supplemented guar-gum gel. For the supplemented veterinary toothpaste an agar-well diffusion assay was used to evaluate its inhibitory potential. RESULTS: Nisin was effective against all isolates. Independently of being or not incorporated in the guar-gum gel, its inhibitory activity on biofilms was higher, with MBIC (12.46 ± 5.16 and 13.60 ± 4.31 µg/mL, respectively) and MBEC values (21.87 ± 11.33 and 42.34 ± 16.61 µg/mL) being lower than MIC (24.61 ± 4.64 and 14.90 ± 4.10 µg/mL) and MBC (63.09 ± 13.22 and 66.63 ± 19.55 µg/mL) values. The supplemented toothpaste was also effective, showing inhibitory activity against 95% of the isolates. CONCLUSIONS: The inhibitory ability of nisin when incorporated in the two delivery systems was maintained or increased, demonstrating the potential of these supplemented vehicles to be applied to PD control in dogs.


Assuntos
Biofilmes/efeitos dos fármacos , Placa Dentária/veterinária , Doenças do Cão/tratamento farmacológico , Nisina/administração & dosagem , Nisina/farmacologia , Cremes Dentais/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Placa Dentária/tratamento farmacológico , Cães , Vias de Administração de Medicamentos , Galactanos/farmacologia , Galactanos/uso terapêutico , Mananas/farmacologia , Mananas/uso terapêutico , Testes de Sensibilidade Microbiana , Gomas Vegetais/farmacologia , Gomas Vegetais/uso terapêutico , Cremes Dentais/química , Cremes Dentais/normas
10.
Proteins ; 84(8): 1043-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27071357

RESUMO

Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043-1054. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Celulase/química , Celulose/química , Clostridiales/química , Thermotoga maritima/química , Sequência de Aminoácidos , Repetição de Anquirina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocombustíveis , Biomassa , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Celulossomas/química , Celulossomas/enzimologia , Clonagem Molecular , Clostridiales/enzimologia , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Thermotoga maritima/enzimologia
11.
Antibiotics (Basel) ; 13(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786108

RESUMO

Captive birds of prey are often used for pest control in urban areas, while also participating in falconry exhibitions. Traveling across the country, these birds may represent a public health concern as they can host pathogenic and zoonotic agents and share the same environment as humans and synanthropic species. In this work, Escherichia coli from the cloacal samples of 27 captive birds of prey were characterized to determine their pathogenic potential. Isolates were clustered through ERIC-PCR fingerprinting, and the phylogenetic groups were assessed using a quadruplex PCR method. Their virulence and resistance profile against nine antibiotics were determined, as well as the isolates' ability to produce extended-spectrum ß-lactamases (ESBLs). The 84 original isolates were grouped into 33 clonal types, and it was observed that more than half of the studied isolates belonged to groups D and B2. Most isolates presented gelatinase activity (88%), almost half were able to produce biofilm (45%), and some were able to produce α-hemolysin (18%). The isolates presented high resistance rates towards piperacillin (42%), tetracycline (33%), and doxycycline (30%), and 6% of the isolates were able to produce ESBLs. The results confirm the importance of these birds as reservoirs of virulence and resistance determinants that can be disseminated between wildlife and humans, stressing the need for more studies focusing on these animals.

12.
Vet Sci ; 11(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39195836

RESUMO

The Pseudomonas genus includes ubiquitous bacteria frequently described as animal and human opportunistic pathogens. A 9-year-old cat was referred for rhinoscopy at the Veterinary Hospital of the Faculty of Veterinary Medicine, University of Lisbon, Portugal, for an investigation of the chronic respiratory signs. Upon rhinoscopy, nasal and nasopharyngeal discharge were observed, and the nasal turbinates showed signs of inflammation. The nasal biopsies were evaluated by histopathology and mycological and bacterial cultures. The histopathology revealed chronic lymphoplasmacytic inflammation. The mycological culture was negative, but the bacterial culture revealed the growth of a bacterial isolate in the pure culture, identified as P. aestus by the sequencing of a 1750 bp PCR amplicon obtained with BCR1 and BCR2 primers, followed by homologous sequences analysis using the NCBI database. The isolate's susceptibility profile towards 14 antimicrobials was evaluated through the disk diffusion method, being observed that it presented a multidrug resistance profile. The studies available on this environmental Pseudomonas strain focused on its potential use for biocide production and application in agricultural settings, and, to the authors' best knowledge, there are no reports describing its association with infectious diseases in humans or animals, highlighting the importance of establishing protocols aiming at the identification and characterization of non-traditional, multidrug-resistant Pseudomonas in the clinical setting.

13.
Sci Rep ; 14(1): 8039, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580725

RESUMO

This study aimed to characterize the antimicrobial resistance (AMR) and virulence profiles of 67 Escherichia coli isolates obtained from faecal samples of 77 wild mammals from 19 different species, admitted in two rescue and rehabilitation centers in Costa Rica. It was possible to classify 48% (n = 32) of the isolates as multidrug-resistant, and while the highest resistance levels were found towards commonly prescribed antimicrobials, resistance to fluoroquinolones and third generation cephalosporins were also observed. Isolates obtained from samples of rehabilitated animals or animals treated with antibiotics were found to have significantly higher AMR levels, with the former also having a significant association with a multidrug-resistance profile. Additionally, the isolates displayed the capacity to produce α-haemolysins (n = 64, 96%), biofilms (n = 51, 76%) and protease (n = 21, 31%). Our results showed that AMR might be a widespread phenomenon within Costa Rican wildlife and that both free-ranging and rehabilitated wild mammals are potential carriers of bacteria with important resistance and virulence profiles. These results highlight the need to study potential sources of resistance determinants to wildlife, and to determine if wild animals can disseminate resistant bacteria in the environment, potentially posing a significant threat to public health and hindering the implementation of a "One Health" approach.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Costa Rica , Saúde Pública , Farmacorresistência Bacteriana , Mamíferos , Animais Selvagens/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia , Bactérias , Centros de Reabilitação
14.
Front Vet Sci ; 11: 1458069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39497740

RESUMO

Introduction: Enterococcus are considered an important genus in terms of Hospital-Acquired Infections (HAIs), which means that their characterization regarding resistance and virulence profiles in the hospital environment is of extreme importance. This article addresses this issue through the characterization of enterococci collected from a Veterinary Biological Isolation and Containment Unit (BICU). Methods: A total of 73 isolates, collected from different surfaces of a Veterinary BICU, were identified as Enterococcus through PCR at species level, after which 34 isolates were selected as representatives using (GTG)5 fingerprinting. These isolates were further characterized phenotypically in terms of antimicrobial resistance through disk diffusion and of virulence factors' expression. Results: The majority of the enterococci isolated presented resistance to erythromycin (79.4%), ampicillin (73.5%), amoxicillin-clavulanic acid (70.6%), tetracycline (67.6%), ciprofloxacin (58.8%) and levofloxacin (50.0%), and were able to produce hemolysin (88.2%) and biofilm (82.3%). Furthermore, in terms of pathogenicity, three isolates (8.8%) were classified as high threats and two (5.9%) as moderate threats. Discussion: The degree of resistance, production of virulence factors and the percentage of isolates classified as moderate or high threat means that a constant vigilance of such strains in veterinary units, but also in clinics and hospitals in general, is an important tool in terms of infection prevention and consequent reduction of HAIs.

15.
Microbiol Spectr ; 12(5): e0407823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534121

RESUMO

Parasiticide fungi are considered an accurate, sustainable, and safe solution for the biocontrol of animal gastrointestinal (GI) parasites. This research provides an initial characterization of the virulence of the native parasiticide fungus Mucor circinelloides (FMV-FR1) and an assessment of its impact on birds' gut microbes. The genome of this fungus was sequenced to identify the genes coding for virulence factors. Also, this fungus was checked for the phenotypic expression of proteinase, lecithinase, DNase, gelatinase, hemolysin, and biofilm production. Finally, an in vivo trial was developed based on feeding M. circinelloides spores to laying hens and peacocks three times a week. Bird feces were collected for 3 months, with total genomic DNA being extracted and subjected to long-read 16S and 25S-28S sequencing. Genes coding for an iron permease (FTR1), iron receptors (FOB1 and FOB2), ADP-ribosylation factors (ARFs) (ARF2 and ARF6), and a GTPase (CDC42) were identified in this M. circinelloides genome. Also, this fungus was positive only for lecithinase activity. The field trial revealed a fecal microbiome dominated by Firmicutes and Proteobacteria in laying hens, and Firmicutes and Bacteroidetes in peacocks, whereas the fecal mycobiome of both bird species was mainly composed of Ascomycetes and Basidiomycetes fungi. Bacterial and fungal alpha-diversities did not differ between sampling time points after M. circinelloides administrations (P = 0.62 and P = 0.15, respectively). Although findings from this research suggest the lack of virulence of this M. circinelloides parasiticide isolate, more complementary in vitro and in vivo research is needed to conclude about the safety of its administration to birds, aiming at controlling their GI parasites.IMPORTANCEA previous study revealed that the native Mucor circinelloides isolate (FMV-FR1) can develop parasiticide activity toward coccidia oocysts, one of the most pathogenic GI parasites in birds. However, ensuring its safety for birds is of utmost importance, namely by studying its virulence profile and potential effect on commensal gut microbes. This initial study revealed that although this M. circinelloides isolate had genes coding for four types of virulence factors-iron permease, iron receptors, ADP-ribosylation factors, and GTPase-and only expressed phenotypically the enzyme lecithinase, the administration of its spores to laying hens and peacocks did not interfere with the abundances and diversities of their gut commensal bacteria and fungi. Although overall results suggest the lack of virulence of this M. circinelloides isolate, more complementary research is needed to conclude about the safety of its administration to birds in the scope of parasite biocontrol programs.


Assuntos
Galinhas , Microbioma Gastrointestinal , Mucor , Fatores de Virulência , Mucor/genética , Mucor/patogenicidade , Animais , Galinhas/microbiologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fezes/microbiologia , Feminino
16.
Appl Environ Microbiol ; 79(21): 6684-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23974146

RESUMO

Degradation of cellulose for biofuels production holds promise in solving important environmental and economic problems. However, the low activities (and thus high enzyme-to-substrate ratios needed) of hydrolytic cellulase enzymes, which convert cellulose into simple sugars, remain a major barrier. As a potential strategy to stabilize cellulases and enhance their activities, we have embedded cellulases of extremophiles into hyperstable α-helical consensus ankyrin domain scaffolds. We found the catalytic domains CelA (CA, GH8; Clostridium thermocellum) and Cel12A (C12A, GH12; Thermotoga maritima) to be stable in the context of the ankyrin scaffold and to be active against both soluble and insoluble substrates. The ankyrin repeats in each fusion are folded, although it appears that for the C12A catalytic domain (CD; where the N and C termini are distant in the crystal structure), the two flanking ankyrin domains are independent, whereas for CA (where termini are close), the flanking ankyrin domains stabilize each other. Although the activity of CA is unchanged in the context of the ankyrin scaffold, the activity of C12A is increased between 2- and 6-fold (for regenerated amorphous cellulose and carboxymethyl cellulose substrates) at high temperatures. For C12A, activity increases with the number of flanking ankyrin repeats. These results showed ankyrin arrays to be a promising scaffold for constructing designer cellulosomes, preserving or enhancing enzymatic activity and retaining thermostability. This modular architecture will make it possible to arrange multiple cellulase domains at a precise spacing within a single polypeptide, allowing us to search for spacings that may optimize reactivity toward the repetitive cellulose lattice.


Assuntos
Anquirinas/química , Celulases/química , Clostridium thermocellum/genética , Modelos Moleculares , Conformação Proteica , Thermotoga maritima/genética , Sequência de Aminoácidos , Anquirinas/metabolismo , Sequência de Bases , Biocombustíveis , Biotecnologia/métodos , Celulases/metabolismo , Dicroísmo Circular , Clonagem Molecular , Primers do DNA/genética , Regiões de Interação com a Matriz , Dados de Sequência Molecular
17.
AIMS Microbiol ; 9(4): 612-646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173971

RESUMO

This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.

18.
Life (Basel) ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36836861

RESUMO

Diabetes mellitus (DM) patients frequently develop diabetic foot ulcers (DFU) which are generally infected by a community of microorganisms, mainly Staphylococcus aureus and Pseudomonas aeruginosa. These bacteria exhibit a multi-drug resistance profile and biofilm-forming ability which represent a hurdle in the treatment of diabetic foot infections (DFI). We aimed to evaluate the potential of Nisin Z, an antimicrobial peptide (AMP), as an alternative treatment for severe DFI. Nisin Z shows antibacterial activity against Gram-positive and Gram-negative bacteria and an increased antibacterial effect against Gram-negatives when added to EDTA. As such, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) were determined for Nisin Z, Nisin Z + EDTA (0.4%), and Nisin Z + EDTA incorporated into guar gum, in order to test its efficacy against S. aureus and P. aeruginosa isolated from the same DFU. Results showed that Nisin Z added to the chelation agent EDTA displayed higher antibacterial and bacteriostatic efficacy against mono and dual co-cultures of S. aureus and P. aeruginosa, and higher antibiofilm efficiency against monocultures. Nisin Z was moderately cytotoxic at 200 µg/mL. Prospect in vivo studies are needed to confirm the potential of Nisin Z supplemented with EDTA to be used as a complement to conventional antibiotic therapy for severe DFI.

19.
Antibiotics (Basel) ; 12(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36978314

RESUMO

Antimicrobial resistance is a public health threat with an increasing expression in low- and middle-income countries such as Cape Verde. In this country, there is an overpopulation of dogs, which may facilitate the spread of resistant bacteria, including extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae. To clarify the role of dogs as reservoirs for the dissemination of this bacterial group, 100 rectal swab samples were collected from confined (n = 50) and non-confined (n = 50) dogs in Santiago and Boa Vista Islands, Cape Verde. These were analyzed using conventional bacteriological techniques for the detection of ESBL-producing Enterobacteriaceae and characterization of their pathogenic and resistance profiles. Twenty-nine samples displayed ESBL-positive bacteria, from which 48 ESBL-producing isolates were obtained and mostly identified as Escherichia coli. Multiple antimicrobial resistance indexes ranged from 0.18 to 0.70 and half of the isolates were classified as multidrug-resistant. Isolates were capable of producing relevant virulence factors, including biofilm, showing virulence indexes between 0.29 and 0.71. As such, dogs in Cape Verde may act as reservoirs of resistant bacteria, including pathogenic and zoonotic species, representing a public health concern. Although further investigation is needed, this study proposes the periodical analysis of dogs' fecal samples to monitor resistance dissemination in the country, in a One-Health perspective.

20.
Microorganisms ; 11(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37110376

RESUMO

The world population's significant increase has promoted a higher consumption of poultry products, which must meet the specified demand while maintaining their quality and safety. It is well known that conventional antimicrobials (antibiotics) have been used in livestock production, including poultry, as a preventive measure against or for the treatment of infectious bacterial diseases. Unfortunately, the use and misuse of these compounds has led to the development and dissemination of antimicrobial drug resistance, which is currently a serious public health concern. Multidrug-resistant bacteria are on the rise, being responsible for serious infections in humans and animals; hence, the goal of this review is to discuss the consequences of antimicrobial drug resistance in poultry production, focusing on the current status of this agroeconomic sector. Novel bacterial control strategies under investigation for application in this industry are also described. These innovative approaches include antimicrobial peptides, bacteriophages, probiotics and nanoparticles. Challenges related to the application of these methods are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA