Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 116(10): 1340-1349, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28407653

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) are resistant to standard treatments, partly due to cancer stem cells (CSCs) localised in hypoxic niches. Compared to X-rays, carbon ion irradiation relies on better ballistic properties, higher relative biological effectiveness and the absence of oxygen effect. Hypoxia-inducible factor-1α (HIF-1α) is involved in the resistance to photons, whereas its role in response to carbon ions remains unclear. METHODS: Two HNSCC cell lines and their CSC sub-population were studied in response to photons or carbon ion irradiation, in normoxia or hypoxia, after inhibition or not of HIF-1α. RESULTS: Under hypoxia, compared to non-CSCs, HIF-1α is expressed earlier in CSCs. A combined effect photons/hypoxia, less observed with carbon ions, results in a synergic and earlier HIF-1α expression in both subpopulations. The diffuse ROS production by photons is concomitant with HIF-1α expression and essential to its activation. There is no oxygen effect in response to carbon ions and the ROS localised in the track might be insufficient to stabilise HIF-1α. Finally, in hypoxia, cells were sensitised to both types of radiations after HIF-1α inhibition. CONCLUSIONS: Hypoxia-inducible factor-1α plays a main role in the response of CSCs and non-CSCs to carbon ion and photon irradiations, which makes the HIF-1α targeting an attractive therapeutic challenge.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Radioterapia com Íons Pesados , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fótons/uso terapêutico , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular , Inativação Gênica , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Transfecção , Hipóxia Tumoral
2.
Radiat Environ Biophys ; 55(1): 19-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26590033

RESUMO

Intra- and inter-individual variability is a well-known aspect of biological responses of cells observed at low doses of radiation, whichever the phenomenon considered (adaptive response, bystander effects, genomic instability, etc.). There is growing evidence that low-dose phenomena are related to cell mechanisms other than DNA damage and misrepair, meaning that other cellular structures may play a crucial role. Therefore, in this study, a series of calculations at low doses was carried out to study the distribution of specific energies from different irradiation doses (3, 10 and 30 cGy) in targets of different sizes (0.1, 1 and 10 µm) corresponding to the dimensions of different cell structures. The results obtained show a strong dependence of the probability distributions of specific energies on the target size: targets with dimensions comparable to those of the cell show a Gaussian-like distribution, whereas very small targets are very likely to not be hit. A statistical analysis showed that the level of fluctuations in the fraction of aberrant cells is only related to the fraction of aberrant cells and the number of irradiated cells, regardless of, for instance, the heterogeneity in cell response.


Assuntos
Células/efeitos da radiação , Modelos Biológicos , Fótons , Células/citologia , Relação Dose-Resposta à Radiação
3.
Radiat Environ Biophys ; 55(1): 31-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708100

RESUMO

The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 µm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Modelos Biológicos , Fótons , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Humanos
4.
Radiat Res ; 193(4): 331-340, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017667

RESUMO

NanOx is a biophysical model recently developed in the context of hadrontherapy to predict the cell survival probability from ionizing radiation. It postulates that this may be factorized into two independent terms describing the cell response to two classes of biological events that occur in the sequence of an irradiation: the local lethal events that occur at nanometric scale and can by themselves induce cell death, and the non-local lethal events that lead to cell death by an effect of accumulation and/or interaction at a larger scale. Here we address how local lethal events are modeled in terms of the inactivation of undifferentiated nanometric targets via an "effective local lethal function F", which characterizes the response of each cell line to the spectra of "restricted specific energy". F is initially determined as a linear combination of basis functions. Then, a parametric expression is used to reproduce the function's main features, a threshold and a saturation, while at the same time reducing the number of free parameters. This strategy was applied to three cell lines in response to ions of different type and energy, which allows for benchmarking of the α(LET) curves predicted with both effective local lethal functions against the experimental data.


Assuntos
Fenômenos Biofísicos , Transferência Linear de Energia , Modelos Biológicos , Radiação Ionizante , Sobrevivência Celular , Relação Dose-Resposta à Radiação , Humanos
5.
Cancers (Basel) ; 10(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561819

RESUMO

NanOx is a new biophysical model that aims at predicting the biological effect of ions in the context of hadron therapy. It integrates the fully-stochastic nature of ionizing radiation both at micrometric and nanometric scales and also takes into account the production and diffusion of reactive chemical species. In order to further characterize the new framework, we discuss the meaning and relevance of most of the NanOx parameters by evaluating their influence on the linear-quadratic coefficient α and on the dose deposited to achieve 10% or 1% of cell survival, D 10 % or D 1 % , as a function of LET. We perform a theoretical study in which variations in the input parameters are propagated into the model predictions for HSG, V79 and CHO-K1 cells irradiated by monoenergetic protons and carbon ions. We conclude that, in the current version of NanOx, the modeling of a specific cell line relies on five parameters, which have to be adjusted to several experimental measurements: the average cellular nuclear radius, the linear-quadratic coefficients describing photon irradiations and the α values associated with two carbon ions of intermediate and high-LET values. This may have interesting implications toward a clinical application of the new biophysical model.

6.
Int J Radiat Biol ; 94(1): 54-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095072

RESUMO

PURPOSE: Our study aimed at evaluating: 1) whether well-established variability in radioadaptive response (AR) in various donor blood lymphocytes might be attributed to inter-individual differences in radiosensitivity to different low dose levels; 2) whether AR is reproducibly present over time in the lymphocytes of AR-positive individuals. Experimental procedure: Whole blood samples of three donors were exposed to low doses (2-30 cGy) of γ-radiation alone (G0 phase) or followed by a 1 Gy challenge dose (late S/early G2 phase), and chromosome aberration were scored to assess the dose-response relationship and adaptive response, correspondingly. Three experiments were performed on blood samples of the same donors at six month intervals. RESULTS: Significant differences in dose response relationship for blood lymphocytes were found among individuals. In most cases, the donors exhibited initial low-dose hypersensitivity (HRS) followed by an increase in radioresistance (IRR). AR could be successfully induced by some particular priming doses in the lymphocytes of each donor; however, the doses resulting in a protective response were quite different for all three donors. These protective doses could equally belong to either HRS or IRR region on the individual dose-response curves. In most cases, no clear AR outcome dependence on the priming dose was found at all. Moreover, pre-exposure to the same low dose could result in opposite effects in the lymphocytes of the same donor in different experiments. CONCLUSIONS: AR variability in human lymphocytes is not attributed to variation in radiosensitivity among individuals and is more drastic than was believed. It seems doubtful that AR is a universal phenomenon which has a consistent impact on the effects of radiation exposure on humans.


Assuntos
Aberrações Cromossômicas , Linfócitos/efeitos da radiação , Tolerância a Radiação , Doadores de Sangue , Relação Dose-Resposta à Radiação , Raios gama , Humanos , Linfócitos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA