Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(6): e0024324, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38767355

RESUMO

Fosmids and cosmids are vectors frequently used in functional metagenomic studies. With a large insert capacity (around 30 kb) they can encode dozens of cloned genes or in some cases, entire biochemical pathways. Fosmids with cloned inserts can be transferred to heterologous hosts and propagated to enable screening for new enzymes and metabolites. After screening, fosmids from clones with an activity of interest must be de novo sequenced, a critical step toward the identification of the gene(s) of interest. In this work, we present a new approach for rapid and high-throughput fosmid sequencing directly from Escherichia coli colonies without liquid culturing or fosmid purification. Our sample preparation involves fosmid amplification with phi29 polymerase and then direct nanopore sequencing using the Oxford Nanopore Technologies system. We also present a bioinformatics pipeline termed "phiXXer" that facilitates both de novo read assembly and vector trimming to generate a linear sequence of the fosmid insert. Finally, we demonstrate the accurate sequencing of 96 fosmids in a single run and validate the method using two fosmid libraries that contain cloned large insert (~30-40 kb) genomic or metagenomic DNA.IMPORTANCELarge-insert clone (fosmids or cosmids) sequencing is challenging and arguably the most limiting step of functional metagenomic screening workflows. Our study establishes a new method for high-throughput nanopore sequencing of fosmid clones directly from lysed Escherichia coli cells. It also describes a companion bioinformatic pipeline that enables de novo assembly of fosmid DNA insert sequences. The devised method widens the potential of functional metagenomic screening by providing a simple, high-throughput approach to fosmid clone sequencing that dramatically speeds the pace of discovery.


Assuntos
Escherichia coli , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Escherichia coli/genética , Sequenciamento por Nanoporos/métodos , Metagenômica/métodos , Cosmídeos/genética , Análise de Sequência de DNA , Clonagem Molecular , Nanoporos , DNA Bacteriano/genética
2.
PLoS One ; 17(5): e0268692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617204

RESUMO

Effective management of the COVID-19 pandemic requires widespread and frequent testing of the population for SARS-CoV-2 infection. Saliva has emerged as an attractive alternative to nasopharyngeal samples for surveillance testing as it does not require specialized personnel or materials for its collection and can be easily provided by the patient. We have developed a simple, fast, and sensitive saliva-based testing workflow that requires minimal sample treatment and equipment. After sample inactivation, RNA is quickly released and stabilized in an optimized buffer, followed by reverse transcription loop-mediated isothermal amplification (RT-LAMP) and detection of positive samples using a colorimetric and/or fluorescent readout. The workflow was optimized using 1,670 negative samples collected from 172 different individuals over the course of 6 months. Each sample was spiked with 50 copies/µL of inactivated SARS-CoV-2 virus to monitor the efficiency of viral detection. Using pre-defined clinical samples, the test was determined to be 100% specific and 97% sensitive, with a limit of detection of 39 copies/mL. The method was successfully implemented in a CLIA laboratory setting for workplace surveillance and reporting. From April 2021-February 2022, more than 30,000 self-collected samples from 755 individuals were tested and 85 employees tested positive mainly during December and January, consistent with high infection rates in Massachusetts and nationwide.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , RNA Viral/genética , Saliva , Sensibilidade e Especificidade , Fluxo de Trabalho , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA