Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
PLoS Genet ; 3(7): e110, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17616978

RESUMO

To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.


Assuntos
Dano ao DNA , Metilação de DNA , Reparo do DNA , Animais , Sequência de Bases , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Quebras de DNA de Cadeia Dupla , Primers do DNA/genética , Expressão Gênica , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Perda de Heterozigosidade , Camundongos , Modelos Genéticos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Recombinação Genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Transfecção
3.
Oncogene ; 21(42): 6434-45, 2002 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12226747

RESUMO

Menin, a nuclear protein encoded by the tumor suppressor gene MEN1, interacts with the AP-1 transcription factor JunD and inhibits its transcriptional activity. In addition, overexpression of Menin counteracts Ras-induced tumorigenesis. We show that Menin inhibits ERK-dependent phosphorylation and activation of both JunD and the Ets-domain transcription factor Elk-1. We also show that Menin represses the inducible activity of the c-fos promoter. Furthermore, Menin expression inhibits Jun N-terminal kinase (JNK)-mediated phosphorylation of both JunD and c-Jun. Kinase assays show that Menin overexpression does not interfere with activation of either ERK2 or JNK1, suggesting that Menin acts at a level downstream of MAPK activation. An N-terminal deletion mutant of Menin that cannot inhibit JunD phosphorylation by JNK, can still repress JunD phosphorylation by ERK2, suggesting that Menin interferes with ERK and JNK pathways through two distinct inhibitory mechanisms. Taken together, our data suggest that Menin uncouples ERK and JNK activation from phosphorylation of their nuclear targets Elk-1, JunD and c-Jun, hence inhibiting accumulation of active Fos/Jun heterodimers. This study provides new molecular insights into the tumor suppressor function of Menin and suggests a mechanism by which Menin may interfere with Ras-dependent cell transformation and oncogenesis.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Ligação a DNA , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase Quinase 1 , Proteínas de Neoplasias/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Sítios de Ligação , Cloranfenicol O-Acetiltransferase/metabolismo , Regulação para Baixo , Glutationa Transferase , Células HeLa , Humanos , Immunoblotting , MAP Quinase Quinase 4 , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Fosforilação , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas Elk-1 do Domínio ets
4.
Science ; 319(5860): 202-6, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18187655

RESUMO

Modifications at the N-terminal tails of nucleosomal histones are required for efficient transcription in vivo. We analyzed how H3 histone methylation and demethylation control expression of estrogen-responsive genes and show that a DNA-bound estrogen receptor directs transcription by participating in bending chromatin to contact the RNA polymerase II recruited to the promoter. This process is driven by receptor-targeted demethylation of H3 lysine 9 at both enhancer and promoter sites and is achieved by activation of resident LSD1 demethylase. Localized demethylation produces hydrogen peroxide, which modifies the surrounding DNA and recruits 8-oxoguanine-DNA glycosylase 1 and topoisomeraseIIbeta, triggering chromatin and DNA conformational changes that are essential for estrogen-induced transcription. Our data show a strategy that uses controlled DNA damage and repair to guide productive transcription.


Assuntos
DNA/metabolismo , Estradiol/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/metabolismo , Genes bcl-2 , Guanina/análogos & derivados , Guanina/metabolismo , Histona Desmetilases , Humanos , Peróxido de Hidrogênio/metabolismo , Lisina/metabolismo , Metilação , Conformação de Ácido Nucleico , Oxirredução , Oxirredutases N-Desmetilantes/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
5.
J Biol Chem ; 280(43): 36474-82, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16081426

RESUMO

The levels of Ras proteins in human primary fibroblasts are regulated by PDGF (platelet-derived growth factor). PDGF induced post-transcriptionally Ha-Ras by stimulating reactive oxygen species (ROS) and ERK1/2. Activation of ERK1/2 and high ROS levels stabilize Ha-Ras protein, by inhibiting proteasomal degradation. We found a remarkable example in vivo of amplification of this circuitry in fibroblasts derived from systemic sclerosis (scleroderma) lesions, producing vast excess of ROS and undergoing rapid senescence. High ROS, Ha-Ras, and active ERK1/2 stimulated collagen synthesis, DNA damage, and accelerated senescence. Conversely ROS or Ras inhibition interrupted the signaling cascade and restored the normal phenotype. We conclude that in primary fibroblasts stabilization of Ras protein by ROS and ERK1/2 amplifies the response of the cells to growth factors and in systemic sclerosis represents a critical factor in the onset and progression of the disease.


Assuntos
Fibroblastos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Crescimento Derivado de Plaquetas/fisiologia , Espécies Reativas de Oxigênio , Escleroderma Sistêmico/patologia , Proteínas ras/metabolismo , Apoptose , Northern Blotting , Células Cultivadas , Dano ao DNA , Citometria de Fluxo , Humanos , Immunoblotting , MAP Quinase Quinase 1/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Oxirredução , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transfecção
6.
J Biol Chem ; 279(10): 9634-41, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-14676207

RESUMO

MAPK phosphorylation of various substrates is mediated by the presence of docking sites, including the D domain and the DEF motif. Depending on the number and sequences of these domains, substrates are phosphorylated by specific subsets of MAPKs. For example, a D domain targets JNK to c-Jun, whereas a DEF motif is required for ERK phosphorylation of c-Fos. JunD, in contrast, contains both D and DEF domains. Here we show that these motifs mediate JunD phosphorylation in response to either ERK or JNK activation. An intact D domain is required for phosphorylation and activation of JunD by both subtypes of MAPK. The DEF motif acts together with the D domain to elicit efficient phosphorylation of JunD in response to the epidermal growth factor (EGF) but has no function on JunD phosphorylation and activation by JNK signaling. Furthermore, we show that conversion of a c-Jun sequence to a canonical DEF domain, as it is present in JunD, elicits c-Jun activation in response to EGF. Our results suggest that evolution of a particular modular system of MAPK targeting sequences has determined a differential response of JunD and c-Jun to ERK activation.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Linhagem Celular , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Análise de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA