RESUMO
The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromatina/genética , Predisposição Genética para Doença/genética , Mutação/genética , Sinapses/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Transtornos Globais do Desenvolvimento Infantil/patologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Exoma/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Rede Nervosa/metabolismo , Razão de ChancesRESUMO
BACKGROUND: Oral fluid provides a noninvasive method of sample collection. The aim of this study was to obtain oral fluid, plasma, and whole blood from patients prescribed amisulpride, aripiprazole, clozapine, quetiapine, risperidone, or sulpiride and to measure plasma:whole blood and plasma:oral fluid analyte distribution. METHODS: Matched oral fluid, plasma and whole-blood samples were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS: There were 101 sets of samples from 90 (56 male, 34 female) patients (nine prescribed 2 antipsychotics, and one 3). There were ≤ 5 samples for aripiprazole, amisulpride, and sulpiride. There was a good relationship between the plasma and hemolyzed whole-blood concentrations (R > 0.95), with plasma:whole-blood ratios varying between 0.7 (amisulpride) and 1.8 (aripiprazole). Amisulpride plasma and oral fluid concentrations were similar, whereas aripiprazole and dehydroaripiprazole oral fluid concentrations were approximately 8% of those in the plasma, reflecting the weak and strong plasma protein binding of these compounds, respectively. For the other analytes, plasma concentrations were 2-4 times higher than oral fluid concentrations. In general, there was a poor relationship (R = 0.3-0.7) between the plasma and oral fluid concentrations, possibly due to intrapatient saliva pH variation during sample collection. CONCLUSIONS: This work shows that hemolyzed whole-blood samples can be used for therapeutic drug monitoring purposes for the analytes of interest, provided that the plasma:whole-blood ratio is taken into account when interpreting results. For aripiprazole and dehydroaripiprazole, measurements in oral fluid will probably not be feasible. However, the relationship between plasma and oral fluid concentration for amisulpride, clozapine (and norclozapine), quetiapine (and possibly quetiapine metabolites), and risperidone/9-hydroxyrisperidone shows potential for oral fluid analysis.
Assuntos
Antipsicóticos/farmacocinética , Cromatografia Líquida/métodos , Monitoramento de Medicamentos/métodos , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Saliva/química , Adulto JovemRESUMO
OBJECTIVE: Certain copy number variants (CNVs) greatly increase the risk of autism. The authors conducted a genetics-first study to investigate whether heterogeneity in the clinical presentation of autism is underpinned by specific genotype-phenotype relationships. METHODS: This international study included 547 individuals (mean age, 12.3 years [SD=4.2], 54% male) who were ascertained on the basis of having a genetic diagnosis of a rare CNV associated with high risk of autism (82 16p11.2 deletion carriers, 50 16p11.2 duplication carriers, 370 22q11.2 deletion carriers, and 45 22q11.2 duplication carriers), as well as 2,027 individuals (mean age, 9.1 years [SD=4.9], 86% male) with autism of heterogeneous etiology. Assessments included the Autism Diagnostic Interview-Revised and IQ testing. RESULTS: The four genetic variant groups differed in autism symptom severity, autism subdomain profile, and IQ profile. However, substantial variability was observed in phenotypic outcome in individual genetic variant groups (74%-97% of the variance, depending on the trait), whereas variability between groups was low (1%-21%, depending on the trait). CNV carriers who met autism criteria were compared with individuals with heterogeneous autism, and a range of profile differences were identified. When clinical cutoff scores were applied, 54% of individuals with one of the four CNVs who did not meet full autism diagnostic criteria had elevated levels of autistic traits. CONCLUSIONS: Many CNV carriers do not meet full diagnostic criteria for autism but nevertheless meet clinical cutoffs for autistic traits. Although profile differences between variants were observed, there is considerable variability in clinical symptoms in the same variant.
Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/epidemiologia , Criança , Deleção de Genes , Estudos de Associação Genética , Heterozigoto , Humanos , Entrevista Psicológica , Masculino , Prevalência , Fatores de Risco , Índice de Gravidade de DoençaRESUMO
Up to 30% of people with schizophrenia do not respond to two (or more) trials of dopaminergic antipsychotics. They are said to have treatment-resistant schizophrenia (TRS). Clozapine is still the only effective treatment for TRS, although it is underused in clinical practice. Initial use is delayed, it can be hard for patients to tolerate, and clinicians can be uncertain as to when to use it. What if, at the start of treatment, we could identify those patients likely to respond to clozapine - and those likely to suffer adverse effects? It is likely that clinicians would feel less inhibited about using it, allowing clozapine to be used earlier and more appropriately. Genetic testing holds out the tantalizing possibility of being able to do just this, and hence the vital importance of pharmacogenomic studies. These can potentially identify genetic markers for both tolerance of and vulnerability to clozapine. We aim to summarize progress so far, possible clinical applications, limitations to the evidence, and problems in applying these findings to the management of TRS. Pharmacogenomic studies of clozapine response and tolerability have produced conflicting results. These are due, at least in part, to significant differences in the patient groups studied. The use of clinical pharmacogenomic testing - to personalize clozapine treatment and identify patients at high risk of treatment failure or of adverse events - has moved closer over the last 20 years. However, to develop such testing that could be used clinically will require larger, multicenter, prospective studies.
RESUMO
IMPORTANCE: Most evidence to date highlights the importance of genetic influences on the liability to autism and related traits. However, most of these findings are derived from clinically ascertained samples, possibly missing individuals with subtler manifestations, and obtained estimates may not be representative of the population. OBJECTIVES: To establish the relative contributions of genetic and environmental factors in liability to autism spectrum disorder (ASD) and a broader autism phenotype in a large population-based twin sample and to ascertain the genetic/environmental relationship between dimensional trait measures and categorical diagnostic constructs of ASD. DESIGN, SETTING, AND PARTICIPANTS: We used data from the population-based cohort Twins Early Development Study, which included all twin pairs born in England and Wales from January 1, 1994, through December 31, 1996. We performed joint continuous-ordinal liability threshold model fitting using the full information maximum likelihood method to estimate genetic and environmental parameters of covariance. Twin pairs underwent the following assessments: the Childhood Autism Spectrum Test (CAST) (6423 pairs; mean age, 7.9 years), the Development and Well-being Assessment (DAWBA) (359 pairs; mean age, 10.3 years), the Autism Diagnostic Observation Schedule (ADOS) (203 pairs; mean age, 13.2 years), the Autism Diagnostic Interview-Revised (ADI-R) (205 pairs; mean age, 13.2 years), and a best-estimate diagnosis (207 pairs). MAIN OUTCOMES AND MEASURES: Participants underwent screening using a population-based measure of autistic traits (CAST assessment), structured diagnostic assessments (DAWBA, ADI-R, and ADOS), and a best-estimate diagnosis. RESULTS: On all ASD measures, correlations among monozygotic twins (range, 0.77-0.99) were significantly higher than those for dizygotic twins (range, 0.22-0.65), giving heritability estimates of 56% to 95%. The covariance of CAST and ASD diagnostic status (DAWBA, ADOS and best-estimate diagnosis) was largely explained by additive genetic factors (76%-95%). For the ADI-R only, shared environmental influences were significant (30% [95% CI, 8%-47%]) but smaller than genetic influences (56% [95% CI, 37%-82%]). CONCLUSIONS AND RELEVANCE: The liability to ASD and a more broadly defined high-level autism trait phenotype in this large population-based twin sample derives primarily from additive genetic and, to a lesser extent, nonshared environmental effects. The largely consistent results across different diagnostic tools suggest that the results are generalizable across multiple measures and assessment methods. Genetic factors underpinning individual differences in autismlike traits show considerable overlap with genetic influences on diagnosed ASD.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Transtornos Globais do Desenvolvimento Infantil/genética , Doenças em Gêmeos/diagnóstico , Doenças em Gêmeos/genética , Adolescente , Criança , Transtornos Globais do Desenvolvimento Infantil/epidemiologia , Doenças em Gêmeos/epidemiologia , Inglaterra/epidemiologia , Meio Ambiente , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Modelos Genéticos , Fenótipo , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , País de Gales/epidemiologiaRESUMO
BACKGROUND: Autism spectrum disorder (ASD) is well recognized to be genetically heterogeneous. It is assumed that the genetic risk factors give rise to a broad spectrum of indistinguishable behavioral presentations. METHODS: We tested this assumption by analyzing the Autism Diagnostic Interview-Revised (ADI-R) symptom profiles in samples comprising six genetic disorders that carry an increased risk for ASD (22q11.2 deletion, Down's syndrome, Prader-Willi, supernumerary marker chromosome 15, tuberous sclerosis complex and Klinefelter syndrome; total n = 322 cases, groups ranging in sample sizes from 21 to 90 cases). We mined the data to test the existence and specificity of ADI-R profiles using a multiclass extension of support vector machine (SVM) learning. We subsequently applied the SVM genetic disorder algorithm on idiopathic ASD profiles from the Autism Genetics Resource Exchange (AGRE). RESULTS: Genetic disorders were associated with behavioral specificity, indicated by the accuracy and certainty of SVM predictions; one-by-one genetic disorder stratifications were highly accurate leading to 63% accuracy of correct genotype prediction when all six genetic disorder groups were analyzed simultaneously. Application of the SVM algorithm to AGRE cases indicated that the algorithm could detect similarity of genetic behavioral signatures in idiopathic ASD subjects. Also, affected sib pairs in the AGRE were behaviorally more similar when they had been allocated to the same genetic disorder group. CONCLUSIONS: Our findings provide evidence for genotype-phenotype correlations in relation to autistic symptomatology. SVM algorithms may be used to stratify idiopathic cases of ASD according to behavioral signature patterns associated with genetic disorders. Together, the results suggest a new approach for disentangling the heterogeneity of ASD.
RESUMO
Clozapine is a uniquely efficacious antipsychotic drug in treatment-resistant schizophrenia. Its use is restricted due to adverse effects including a rare but dangerous reduction in neutrophils (agranulocytosis) and the mandatory hematological monitoring this entails in many countries. We review the statistical, ethical and legal issues arising from a hypothetical pharmacogenetic test for clozapine, using the UK as an exemplary case for consideration. Our key findings include: a consideration of the probabilistic results that a pharmacogenetic test may return; the impact on drug licensing; and the potential for pharmacogenetic tests for clozapine being used without consent under the UK's legal framework. We make recommendations regarding regulatory changes applicable to the special case of pharmacogenetic testing in clozapine treatment.
Assuntos
Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Esquizofrenia/genética , Clozapina/uso terapêutico , Humanos , Farmacogenética/métodos , Esquizofrenia/tratamento farmacológico , Reino UnidoRESUMO
BACKGROUND: Studies of chromosome 15 abnormality have implicated over-expression of paternally imprinted genes in the 15q11-13 region in the aetiology of autism. To test this hypothesis we compared individuals with Prader-Willi syndrome (PWS) due to uniparental disomy (UPD--where paternally imprinted genes are over-expressed) to individuals with the 15q11-13 deletion form of the syndrome (where paternally imprinted genes are not over-expressed). We also tested reports that PWS cases due to the larger type I (TI) form of deletion show differences to cases with the smaller type II (TII) deletion. METHOD: Ninety-six individuals with PWS were recruited from genetic centres and the PWS association. Forty-nine individuals were confirmed as having maternal UPD of chromosome 15 and were age and sex matched to 47 individuals with a deletion involving 15q11-13 (32 had the shorter (T II) deletion, and 14 had the longer (TI) deletion). Behavioural assessments were carried out blind to genetic status, using the Autism Diagnostic Observation Schedule (ADOS), the Autism Diagnostic Interview (ADI), the Autism Screening Questionnaire (ASQ), the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS), the Vineland Adaptive Behaviour Scales (VABS), and measurements of intellectual ability, including the Wechsler and Mullen Scales and Raven's Matrices. RESULTS: UPD cases exhibited significantly more autistic-like impairments in reciprocal social interaction on questionnaire, interview and standardised observational measures. Comparison of TI and TII deletion cases revealed few differences, but ability levels tended to be lower in the TI deletion cases. CONCLUSIONS: Findings from a large study comparing deletion and UPD forms of Prader-Willi syndrome were consistent with other evidence in indicating that paternally imprinted genes in the 15q11-13 region constitute a genetic risk factor for aspects of autistic symptomatology. These genes may therefore play a role in the aetiology of autism. By contrast with another report, there was no clear-cut relationship between the size of the deletion and the form of cognitive and behavioural phenotype.