RESUMO
Hybridization is recognized as an important evolutionary force, but identifying and timing admixture events between divergent lineages remain a major aim of evolutionary biology. While this has traditionally been done using inferential tools on contemporary genomes, the latest advances in paleogenomics have provided a growing wealth of temporally distributed genomic data. Here, we used individual-based simulations to generate chromosome-level genomic data for a 2-population system and described temporal neutral introgression patterns under a single- and 2-pulse admixture model. We computed 6 summary statistics aiming to inform the timing and number of admixture pulses between interbreeding entities: lengths of introgressed sequences and their variance within genomes, as well as genome-wide introgression proportions and related measures. The first 2 statistics could confidently be used to infer interlineage hybridization history, peaking at the beginning and shortly after an admixture pulse. Temporal variation in introgression proportions and related statistics provided more limited insights, particularly when considering their application to ancient genomes still scant in number. Lastly, we computed these statistics on Homo sapiens paleogenomes and successfully inferred the hybridization pulse from Neanderthal that occurred approximately 40 to 60 kya. The scarce number of genomes dating from this period prevented more precise inferences, but the accumulation of paleogenomic data opens promising perspectives as our approach only requires a limited number of ancient genomes.
Assuntos
Genômica , Homem de Neandertal , Animais , Paleontologia , Homem de Neandertal/genética , Genoma , Evolução BiológicaRESUMO
In a recent article, Immel et al. (Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, et al. 2021. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol Biol Evol. 38:4059-4076) extracted DNA from 36 individuals dead from plague in Ellwangen, Southern Germany, during the 16th century. By comparing their human leukocyte antigen (HLA) genotypes with those of 50 present-day Ellwangen inhabitants, the authors reported a significant decrease of HLA-B*51:01 and HLA-C*06:02 and a significant increase of HLA-DRB1*13:01/13:02 frequencies from ancient to modern populations. After comparing these frequencies with a larger sample of 8,862 modern Germans and performing simulations of natural selection, they concluded that these changes had been driven by natural selection. In an attempt to provide more evidence on such stimulating results, we explored the HLA frequency patterns over all of Europe, we predicted binding affinities of HLA-B/C/DRB1 alleles to 106,515 Yersinia pestis-derived peptides, and we performed forward simulations of HLA genetic profiles under neutrality. Our analyses do not sustain the conclusions of HLA protection or susceptibility to plague based on ancient DNA.
Assuntos
Predisposição Genética para Doença , Antígenos HLA , Peste , DNA , DNA Antigo , Europa (Continente) , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II , Humanos , Peste/genética , Yersinia pestisRESUMO
SUMMARY: SPLATCHE3 simulates genetic data under a variety of spatially explicit evolutionary scenarios, extending previous versions of the framework. The new capabilities include long-distance migration, spatially and temporally heterogeneous short-scale migrations, alternative hybridization models, simulation of serial samples of genetic data and a large variety of DNA mutation models. These implementations have been applied independently to various studies, but grouped together in the current version. AVAILABILITY AND IMPLEMENTATION: SPLATCHE3 is written in C++ and is freely available for non-commercial use from the website http://www.splatche.com/splatche3. It includes console versions for Linux, MacOs and Windows and a user-friendly GUI for Windows, as well as detailed documentation and ready-to-use examples.
Assuntos
Evolução Biológica , Software , Simulação por ComputadorRESUMO
Cavalli-Sforza and coauthors originally explored the genetic variation of modern humans throughout the world and observed an overall east-west genetic gradient in Asia. However, the specific environmental and population genetics processes causing this gradient were not formally investigated and promoted discussion in recent studies. Here we studied the influence of diverse environmental and population genetics processes on Asian genetic gradients and identified which could have produced the observed gradient. To do so, we performed extensive spatially-explicit computer simulations of genetic data under the following scenarios: (a) variable levels of admixture between Paleolithic and Neolithic populations, (b) migration through long-distance dispersal (LDD), (c) Paleolithic range contraction induced by the last glacial maximum (LGM), and (d) Neolithic range expansions from one or two geographic origins (the Fertile Crescent and the Yangzi and Yellow River Basins). Next, we estimated genetic gradients from the simulated data and we found that they were sensible to the analysed processes, especially to the range contraction induced by LGM and to the number of Neolithic expansions. Some scenarios were compatible with the observed east-west genetic gradient, such as the Paleolithic expansion with a range contraction induced by the LGM or two Neolithic range expansions from both the east and the west. In general, LDD increased the variance of genetic gradients among simulations. We interpreted the obtained gradients as a consequence of both allele surfing caused by range expansions and isolation by distance along the vast east-west geographic axis of this continent.
Assuntos
Variação Genética , Genética Populacional , Genoma Humano , Alelos , Ásia , Migração Humana , HumanosRESUMO
Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia.
Assuntos
Agricultura , Antropologia , Europa (Continente) , Genética Populacional , Humanos , Região do Mediterrâneo , Análise de Componente PrincipalRESUMO
European genetic gradients of modern humans were initially interpreted as a consequence of the demic diffusion of expanding Neolithic farmers. However, recent studies showed that these gradients may also be influenced by other evolutionary processes such as population admixture or range contractions. Genetic gradients were observed in the Americas, although their specific evolutionary causes were not investigated. Here we extended the approach used to study genetic gradients in Europe to analyze the influence of diverse evolutionary scenarios on American genetic gradients. Using extensive computer simulations, we evaluated the impact of (i) admixture between expansion waves of modern humans, (ii) the presence of ice-sheets during the last glacial maximum (LGM) and (iii) long-distance dispersal (LDD) events, on the genetic gradients (detected by principal component analysis) of the entire continent, North America and South America. The specific simulation of North and South America showed that genetic gradients are usually orthogonal to the direction of range expansions-either expansions from Bering or posterior re-expansions to recolonize northern regions after ice sheets melting-and we suggest that they result from allele surfing processes. Conversely, our results on the entire continent show a northwest-southeast gradient obtained with any scenario, which we interpreted as a consequence of isolation by distance along the long length of the continent. These findings suggest that distinct genetic gradients can be detected at different regions of the Americas and that subcontinent regions present gradients more sensible to evolutionary and environmental factors (such as LDD and the LGM) than the whole continent.
Assuntos
Evolução Molecular , Humanos , Análise de Componente Principal , América do SulRESUMO
Human-induced habitat changes may lead to the breakdown of reproductive barriers between distantly related species. This phenomenon may result in fertile first-generation hybrids (F1 ) that exclude the genome of one parental species during gametogenesis, thus disabling introgression. The species extinction risk associated with hybridization with genome exclusion is largely underappreciated because the phenomenon produces only F1 hybrid phenotype, leading to the misconception that hybrids are sterile and potentially of minor conservation concern. We used a simulation model that integrates the main genetic, demographic, and ecological processes to examine the dynamics of hybridization with genome exclusion. We showed that this mode of hybridization may lead to extremely rapid extinction when the process of genome exclusion is unbalanced between the interbreeding species and when the hybridization rate is not negligible. The coexistence of parental species was possible in some cases of asymmetrical genome exclusion, but show this equilibrium was highly vulnerable to environmental variation. Expanding the exclusive habitat of the species at risk allowed its persistence. Our results highlight the extent of possible extinction risk due to hybridization with genome exclusion and suggest habitat management as a promising conservation strategy. In anticipation of serious threats to biodiversity due to hybridization with genome exclusion, we recommend a detailed assessment of the reproductive status of hybrids in conservation programs. We suggest such assessments include the inspection of genetic content in hybrid gametes.
Assuntos
Conservação dos Recursos Naturais , Hibridização Genética , Biodiversidade , Ecossistema , Extinção BiológicaRESUMO
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.
Assuntos
Demografia , Variação Genética , Genética Populacional , Migração Humana , Ásia , Ecossistema , Europa (Continente) , Fluxo Gênico , Genótipo , Geografia , Humanos , Endogamia , Dinâmica PopulacionalRESUMO
BACKGROUND: Recent advances in sequencing technologies have allowed for the retrieval of ancient DNA data (aDNA) from skeletal remains, providing direct genetic snapshots from diverse periods of human prehistory. Comparing samples taken in the same region but at different times, hereafter called "serial samples", may indicate whether there is continuity in the peopling history of that area or whether an immigration of a genetically different population has occurred between the two sampling times. However, the exploration of genetic relationships between serial samples generally ignores their geographical locations and the spatiotemporal dynamics of populations. Here, we present a new coalescent-based, spatially explicit modelling approach to investigate population continuity using aDNA, which includes two fundamental elements neglected in previous methods: population structure and migration. The approach also considers the extensive temporal and geographical variance that is commonly found in aDNA population samples. RESULTS: We first showed that our spatially explicit approach is more conservative than the previous (panmictic) approach and should be preferred to test for population continuity, especially when small and isolated populations are considered. We then applied our method to two mitochondrial datasets from Germany and France, both including modern and ancient lineages dating from the early Neolithic. The results clearly reject population continuity for the maternal line over the last 7500 years for the German dataset but not for the French dataset, suggesting regional heterogeneity in post-Neolithic migratory processes. CONCLUSIONS: Here, we demonstrate the benefits of using a spatially explicit method when investigating population continuity with aDNA. It constitutes an improvement over panmictic methods by considering the spatiotemporal dynamics of genetic lineages and the precise location of ancient samples. The method can be used to investigate population continuity between any pair of serial samples (ancient-ancient or ancient-modern) and to investigate more complex evolutionary scenarios. Although we based our study on mitochondrial DNA sequences, diploid molecular markers of different types (DNA, SNP, STR) can also be simulated with our approach. It thus constitutes a promising tool for the analysis of the numerous aDNA datasets being produced, including genome wide data, in humans but also in many other species.
Assuntos
Evolução Biológica , Simulação por Computador , DNA Antigo , População Branca/genética , DNA Mitocondrial/genética , Emigração e Imigração , Europa (Continente) , Variação Genética , Genética Populacional , HumanosRESUMO
BACKGROUND: Recent genetic studies have suggested that the colonization of East Asia by modern humans was more complex than a single origin from the South, and that a genetic contribution via a Northern route was probably quite substantial. RESULTS: Here we use a spatially-explicit computer simulation approach to investigate the human migration hypotheses of this region based on one-route or two-route models. We test the likelihood of each scenario by using Human Leukocyte Antigen (HLA) - A, -B, and - DRB1 genetic data of East Asian populations, with both selective and demographic parameters considered. The posterior distribution of each parameter is estimated by an Approximate Bayesian Computation (ABC) approach. CONCLUSIONS: Our results strongly support a model with two main routes of colonization of East Asia on both sides of the Himalayas, with distinct demographic histories in Northern and Southern populations, characterized by more isolation in the South. In East Asia, gene flow between populations originating from the two routes probably existed until a remote prehistoric period, explaining the continuous pattern of genetic variation currently observed along the latitude. A significant although dissimilar level of balancing selection acting on the three HLA loci is detected, but its effect on the local genetic patterns appears to be minor compared to those of past demographic events.
Assuntos
Simulação por Computador , Antígenos HLA/genética , Migração Humana , Povo Asiático/genética , Teorema de Bayes , Ásia Oriental , Fluxo Gênico , Variação Genética , HumanosRESUMO
The evolutionary history of modern humans is characterized by numerous migrations driven by environmental change, population pressures, and cultural innovations. In Europe, the events most widely considered to have had a major impact on patterns of genetic diversity are the initial colonization of the continent by anatomically modern humans (AMH), the last glacial maximum, and the Neolithic transition. For some decades it was assumed that the geographical structuring of genetic diversity within Europe was mainly the result of gene flow during and soon after the Neolithic transition, but recent advances in next-generation sequencing (NGS) technologies, computer simulation modeling, and ancient DNA (aDNA) analyses are challenging this simplistic view. Here we review the current knowledge on the evolutionary history of humans in Europe based on archaeological and genetic data.
Assuntos
Evolução Biológica , População Branca/genética , Animais , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Fósseis , Variação Genética , HumanosRESUMO
Cavalli-Sforza and Edwards (Analysis of human evolution. 1963. In: Geerts SJ, editor. Genetics today: Proceedings of the 11th International Congress of Genetics, The Hague, The Netherlands. New York: Pergamon. p. 923-993.) initiated the representation of genetic relationships among human populations with principal component (PC) analysis (PCA). Their study revealed the presence of a southeast-northwest (SE-NW) gradient of genetic variation in current European populations, which was interpreted as the result of the demic diffusion of early neolithic farmers during their expansion from the near east. However, this interpretation has been questioned, as PCA gradients can occur even when there is no expansion and because the first PC axis is often orthogonal to the expansion axis. Here, we revisit PCA patterns obtained under realistic scenarios of the settlement of Europe, focusing on the effects of various levels of admixture between paleolithic and neolithic populations, and of range contractions during the last glacial maximum (LGM). Using extensive simulations, we find that the first PC (PC1) gradients are orthogonal to the expansion axis, but only when the expansion is recent (neolithic). More ancient (paleolithic) expansions alter the orientation of the PC1 gradient due to a spatial homogenization of genetic diversity over time, and to the exact location of LGM refugia from which re-expansions proceeded. Overall we find that PC1 gradients consistently follow an SE-NW orientation if there is a large paleolithic contribution to the current European gene pool, and if the main refuge area during the last ice age was in the Iberian Peninsula. Our study suggests that an SE-NW PC1 gradient is compatible with little genetic impact of neolithic populations on the current European gene pool, and that range contractions have affected observed genetic patterns.
Assuntos
Evolução Biológica , Etnicidade/genética , Variação Genética , População Branca/genética , Alelos , Europa (Continente) , Frequência do Gene , Pool Gênico , Humanos , Oriente Médio , Análise de Componente PrincipalRESUMO
Recent studies have revealed that 2-3% of the genome of non-Africans might come from Neanderthals, suggesting a more complex scenario of modern human evolution than previously anticipated. In this paper, we use a model of admixture during a spatial expansion to study the hybridization of Neanderthals with modern humans during their spread out of Africa. We find that observed low levels of Neanderthal ancestry in Eurasians are compatible with a very low rate of interbreeding (<2%), potentially attributable to a very strong avoidance of interspecific matings, a low fitness of hybrids, or both. These results suggesting the presence of very effective barriers to gene flow between the two species are robust to uncertainties about the exact demography of the Paleolithic populations, and they are also found to be compatible with the observed lack of mtDNA introgression. Our model additionally suggests that similarly low levels of introgression in Europe and Asia may result from distinct admixture events having occurred beyond the Middle East, after the split of Europeans and Asians. This hypothesis could be tested because it predicts that different components of Neanderthal ancestry should be present in Europeans and in Asians.
Assuntos
Consanguinidade , Hominidae/fisiologia , Reprodução/fisiologia , Animais , Povo Asiático , China , Simulação por Computador , Demografia , França , Humanos , Hibridização Genética , População BrancaRESUMO
BACKGROUND/AIMS: The genetic diversity of Europeans has been shaped by various evolutionary forces including their demographic history. Genetic data can thus be used to draw inferences on the population history of Europe using appropriate statistical methods such as computer simulation, which constitutes a powerful tool to study complex models. METHODS: Here, we focus on spatially explicit simulation, a method which takes population movements over space and time into account. We present its main principles and then describe a series of studies using this approach that we consider as particularly significant in the context of European prehistory. RESULTS AND CONCLUSION: All simulation studies agree that ancient demographic events played a significant role in the establishment of the European gene pool; but while earlier works support a major genetic input from the Near East during the Neolithic transition, the most recent ones revalue positively the contribution of pre-Neolithic hunter-gatherers and suggest a possible impact of very ancient demographic events. This result of a substantial genetic continuity from pre-Neolithic times to the present challenges some recent studies analyzing ancient DNA. We discuss the possible reasons for this discrepancy and identify future lines of investigation in order to get a better understanding of European evolution.
Assuntos
Simulação por Computador , Variação Genética , Genética Populacional/história , População Branca/genética , DNA/genética , Europa (Continente) , História Antiga , HumanosRESUMO
Due to past and current climatic changes, range contractions and range shifts are essential stages in the history of a species. However, unlike range expansions, the molecular consequences of these processes have been little investigated. In order to fill this gap, we simulated patterns of molecular diversity within and between populations for various types of range contractions and range shifts. We show that range contractions tend to decrease genetic diversity as compared with population with stable ranges but quite counterintuitively fast range contractions preserve higher levels of diversity and induce lower levels of genetic differentiation among refuge areas than slow contractions. Contrastingly, fast range shifts lead to lower levels of diversity than slow range shifts. At odds with our expectations, we find that species actively migrating toward refuge areas can only preserve higher levels of diversity in refugia if the contraction is rapid. Under slow range contraction or slow range shift, active migration toward refugia lead to a larger loss of diversity as compared with scenarios with isotropic migration and may thus not be a good evolutionary strategy. These results suggest that the levels of diversity preserved after a climate change both within and between refuge areas will not only depend on the dispersal abilities of a species but also on the speed of the change. It also implies that a given episode of climatic change will impact differently species with different generation times.
Assuntos
Migração Animal , Mudança Climática , Evolução Molecular , Modelos Biológicos , Animais , Simulação por Computador , DNA/química , Meio Ambiente , Variação Genética , Genética Populacional , Comportamento de Retorno ao Território VitalRESUMO
The worldwide expansion of modern humans (Homo sapiens) started before the extinction of Neanderthals (Homo neanderthalensis). Both species coexisted and interbred, leading to slightly higher introgression in East Asians than in Europeans. This distinct ancestry level has been argued to result from selection, but range expansions of modern humans could provide an alternative explanation. This hypothesis would lead to spatial introgression gradients, increasing with distance from the expansion source. We investigate the presence of Neanderthal introgression gradients after past human expansions by analyzing Eurasian paleogenomes. We show that the out-of-Africa expansion resulted in spatial gradients of Neanderthal ancestry that persisted through time. While keeping the same gradient orientation, the expansion of early Neolithic farmers contributed decisively to reducing the Neanderthal introgression in European populations compared to Asian populations. This is because Neolithic farmers carried less Neanderthal DNA than preceding Paleolithic hunter-gatherers. This study shows that inferences about past human population dynamics can be made from the spatiotemporal variation in archaic introgression.
Assuntos
Introgressão Genética , Homem de Neandertal , Filogeografia , Animais , Humanos , África , Povo Asiático , Hominidae/genética , Homem de Neandertal/genética , População Europeia/genética , Introgressão Genética/genéticaRESUMO
Testing the association between objects is central in ecology, evolution, and quantitative sciences in general. Two types of variables can describe the relationships between objects: point variables (measured on individual objects), and distance variables (measured between pairs of objects). The Mantel test and derived methods have been extensively used for distance variables. Yet, these methods have been criticized due to low statistical power and inflated type I error when spatial autocorrelation is present. Here, we assessed the statistical power between different types of tested variables and the type I error rate over a wider range of autocorrelation intensities than previously assessed, both on univariate and multivariate data. We also illustrated the performance of distance matrix statistics through computational simulations of genetic diversity. We show that the Mantel test and derived methods are not affected by inflated type I error when spatial autocorrelation affects only one variable when investigating correlations, or when either the response or the explanatory variable(s) is affected by spatial autocorrelation while investigating causal relationships. As previously noted, with autocorrelation affecting more variables, inflated type I error could be reduced by modifying the significance threshold. Additionally, the Mantel test has no problem of statistical power when the hypothesis is formulated in terms of distance variables. We highlight that transformation of variable types should be avoided because of the potential information loss and modification of the tested hypothesis. We propose a set of guidelines to help choose the appropriate method according to the type of variables and defined hypothesis.
RESUMO
OBJECTIVES: The analysis of ancient mitochondrial DNA from osteological remains has challenged previous conclusions drawn from the analysis of mitochondrial DNA from present populations, notably by revealing an absence of genetic continuity between the Neolithic and modern populations in Central Europe. Our study investigates how to reconcile these contradictions at the mitochondrial level using a modeling approach. MATERIALS AND METHODS: We used a spatially explicit computational framework to simulate ancient and modern DNA sequences under various evolutionary scenarios of post Neolithic demographic events and compared the genetic diversity of the simulated and observed mitochondrial sequences. We investigated which-if any-scenarios were able to reproduce statistics of genetic diversity similar to those observed, with a focus on the haplogroup N1a, associated with the spread of early Neolithic farmers. RESULTS: Demographic fluctuations during the Neolithic transition or subsequent demographic collapses after this period, that is, due to epidemics such as plague, are not sufficient to explain the signal of population discontinuity detected on the mitochondrial DNA in Central Europe. Only a scenario involving a substantial genetic input due to the arrival of migrants after the Neolithic transition, possibly during the Bronze Age, is compatible with observed patterns of genetic diversity. DISCUSSION: Our results corroborate paleogenomic studies, since out of the alternative hypotheses tested, the best one that was able to recover observed patterns of mitochondrial diversity in modern and ancient Central European populations was one were immigration of populations from the Pontic steppes during the Bronze Age was explicitly simulated.
Assuntos
DNA Mitocondrial , Mitocôndrias , Mitocôndrias/genética , Europa (Continente) , DNA Mitocondrial/genética , Emigração e Imigração , Evolução Biológica , DNA AntigoRESUMO
The aim of the study is to investigate mitochondrial diversity in Neolithic Greece and its relation to hunter-gatherers and farmers who populated the Danubian Neolithic expansion axis. We sequenced 42 mitochondrial palaeogenomes from Greece and analysed them together with European set of 328 mtDNA sequences dating from the Early to the Final Neolithic and 319 modern sequences. To test for population continuity through time in Greece, we use an original structured population continuity test that simulates DNA from different periods by explicitly considering the spatial and temporal dynamics of populations. We explore specific scenarios of the mode and tempo of the European Neolithic expansion along the Danubian axis applying spatially explicit simulations coupled with Approximate Bayesian Computation. We observe a striking genetic homogeneity for the maternal line throughout the Neolithic in Greece whereas population continuity is rejected between the Neolithic and present-day Greeks. Along the Danubian expansion axis, our best-fitting scenario supports a substantial decrease in mobility and an increasing local hunter-gatherer contribution to the gene-pool of farmers following the initial rapid Neolithic expansion. Οur original simulation approach models key demographic parameters rather than inferring them from fragmentary data leading to a better understanding of this important process in European prehistory.
Assuntos
DNA Mitocondrial , Mitocôndrias , Teorema de Bayes , DNA Antigo , DNA Mitocondrial/genética , Europa (Continente) , Genética Populacional , Grécia , História Antiga , Humanos , Mitocôndrias/genética , Dinâmica PopulacionalRESUMO
In a series of highly influential publications, Cavalli-Sforza and colleagues used principal component (PC) analysis to produce maps depicting how human genetic diversity varies across geographic space. Within Europe, the first axis of variation (PC1) was interpreted as evidence for the demic diffusion model of agriculture, in which farmers expanded from the Near East approximately 10,000 years ago and replaced the resident hunter-gatherer populations with little or no interbreeding. These interpretations of the PC maps have been recently questioned as the original results can be reproduced under models of spatially covarying allele frequencies without any expansion. Here, we study PC maps for data simulated under models of range expansion and admixture. Our simulations include a spatially realistic model of Neolithic farmer expansion and assume various levels of interbreeding between farmer and resident hunter-gatherer populations. An important result is that under a broad range of conditions, the gradients in PC1 maps are oriented along a direction perpendicular to the axis of the expansion, rather than along the same axis as the expansion. We propose that this surprising pattern is an outcome of the "allele surfing" phenomenon, which creates sectors of high allele-frequency differentiation that align perpendicular to the direction of the expansion.