Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rep Prog Phys ; 79(6): 064501, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27182054

RESUMO

Nuclear magnetic resonance has emerged as a vital tool to explore the fundamental physics of Kondo lattice systems. Because nuclear spins experience two different hyperfine couplings to the itinerant conduction electrons and to the local f moments, the Knight shift can probe multiple types of spin correlations that are not accessible via other techniques. The Knight shift provides direct information about the onset of heavy electron coherence and the emergence of the heavy electron fluid.

2.
Proc Natl Acad Sci U S A ; 109(45): E3067-73, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23010926

RESUMO

The heavy electron Kondo liquid is an emergent state of condensed matter that displays universal behavior independent of material details. Properties of the heavy electron liquid are best probed by NMR Knight shift measurements, which provide a direct measure of the behavior of the heavy electron liquid that emerges below the Kondo lattice coherence temperature as the lattice of local moments hybridizes with the background conduction electrons. Because the transfer of spectral weight between the localized and itinerant electronic degrees of freedom is gradual, the Kondo liquid typically coexists with the local moment component until the material orders at low temperatures. The two-fluid formula captures this behavior in a broad range of materials in the paramagnetic state. In order to investigate two-fluid behavior and the onset and physical origin of different long range ordered ground states in heavy electron materials, we have extended Knight shift measurements to URu(2)Si(2), CeIrIn(5), and CeRhIn(5). In CeRhIn(5) we find that the antiferromagnetic order is preceded by a relocalization of the Kondo liquid, providing independent evidence for a local moment origin of antiferromagnetism. In URu(2)Si(2) the hidden order is shown to emerge directly from the Kondo liquid and so is not associated with local moment physics. Our results imply that the nature of the ground state is strongly coupled with the hybridization in the Kondo lattice in agreement with phase diagram proposed by Yang and Pines.

3.
Phys Rev Lett ; 104(20): 206403, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20867044

RESUMO

The Ni1+/Ni2+ states of nickelates have the identical (3d(9)/3d(8)) electronic configuration as Cu2+/Cu3+ in the high temperature superconducting cuprates, and are expected to show interesting properties. An intriguing question is whether mimicking the electronic and structural features of cuprates would also result in superconductivity in nickelates. Here we report experimental evidence for a bulklike magnetic transition in La4Ni3O8 at 105 K. Density functional theory calculations relate the transition to a spin density wave nesting instability of the Fermi surface.

4.
Nat Nanotechnol ; 15(6): 482-490, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451501

RESUMO

Distance-dependent magnetic resonance tuning (MRET) technology enables the sensing and quantitative imaging of biological targets in vivo, with the advantage of deep tissue penetration and fewer interactions with the surroundings as compared with those of fluorescence-based Förster resonance energy transfer. However, applications of MRET technology in vivo are currently limited by the moderate contrast enhancement and stability of T1-based MRET probes. Here we report a new two-way magnetic resonance tuning (TMRET) nanoprobe with dually activatable T1 and T2 magnetic resonance signals that is coupled with dual-contrast enhanced subtraction imaging. This integrated platform achieves a substantially improved contrast enhancement with minimal background signal and can be used to quantitatively image molecular targets in tumours and to sensitively detect very small intracranial brain tumours in patient-derived xenograft models. The high tumour-to-normal tissue ratio offered by TMRET in combination with dual-contrast enhanced subtraction imaging provides new opportunities for molecular diagnostics and image-guided biomedical applications.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste/análise , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas/análise , Animais , Encéfalo/diagnóstico por imagem , Humanos , Aumento da Imagem/métodos , Camundongos , Micelas , Nanotecnologia/métodos
5.
Phys Rev Lett ; 103(19): 197004, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365948

RESUMO

We report Knight-shift experiments on the superconducting heavy-electron material CeCoIn5 that allow one to track with some precision the behavior of the heavy-electron Kondo liquid in the superconducting state with results in agreement with BCS theory. An analysis of the 115In nuclear quadrupole resonance spin-lattice relaxation rate T1(-1) measurements under pressure reveals the presence of 2d magnetic quantum critical fluctuations in the heavy-electron component that are a promising candidate for the pairing mechanism in this material. Our results are consistent with an antiferromagnetic quantum critical point located at slightly negative pressure in CeCoIn5 and provide additional evidence for significant similarities between the heavy-electron materials and the high-T(c) cuprates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA