Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(3): 1041-6, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19955428

RESUMO

Spatial heterogeneities and spatial separation of hosts are often seen as key factors when developing accurate predictive models of the spread of pathogens. The question we address in this paper is how coarse the resolution of the spatial data can be for a model to be a useful tool for informing control policies. We examine this problem using the specific case of foot-and-mouth disease spreading between farms using the formulation developed during the 2001 epidemic in the United Kingdom. We show that, if our model is carefully parameterized to match epidemic behavior, then using aggregate county-scale data from the United States is sufficient to closely determine optimal control measures (specifically ring culling). This result also holds when the approach is extended to theoretical distributions of farms where the spatial clustering can be manipulated to extremes. We have therefore shown that, although spatial structure can be critically important in allowing us to predict the emergent population-scale behavior from a knowledge of the individual-level dynamics, for this specific applied question, such structure is mostly subsumed in the parameterization allowing us to make policy predictions in the absence of high-quality spatial information. We believe that this approach will be of considerable benefit across a range of disciplines where data are only available at intermediate spatial scales.


Assuntos
Controle de Doenças Transmissíveis , Transmissão de Doença Infecciosa , Análise por Conglomerados
2.
Int J Health Geogr ; 7: 18, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18447932

RESUMO

BACKGROUND: Recent advances in GIS technology and remote sensing have provided new opportunities to collect ecologic data on agricultural pesticide exposure. Many pesticide studies have used historical or records-based data on crops and their associated pesticide applications to estimate exposure by measuring residential proximity to agricultural fields. Very few of these studies collected environmental and biological samples from study participants. One of the reasons for this is the cost of identifying participants who reside near study fields and analyzing samples obtained from them. In this paper, we present a cost-effective, GIS-based method for crop field selection and household recruitment in a prospective pesticide exposure study in a remote location. For the most part, our multi-phased approach was carried out in a research facility, but involved two brief episodes of fieldwork for ground truthing purposes. This method was developed for a larger study designed to examine the validity of indirect pesticide exposure estimates by comparing measured exposures in household dust, water and urine with records-based estimates that use crop location, residential proximity and pesticide application data. The study focused on the pesticide atrazine, a broadleaf herbicide used in corn production and one of the most widely-used pesticides in the U.S. RESULTS: We successfully used a combination of remotely-sensed data, GIS-based methods and fieldwork to select study fields and recruit participants in Illinois, a state with high corn production and heavy atrazine use. Our several-step process consisted of the identification of potential study fields and residential areas using aerial photography; verification of crop patterns and land use via site visits; development of a GIS-based algorithm to define recruitment areas around crop fields; acquisition of geocoded household-level data within each recruitment area from a commercial vendor; and confirmation of final participant household locations via ground truthing. The use of these procedures resulted in a sufficient sample of participants from 14 recruitment areas in seven Illinois counties. CONCLUSION: One of the challenges in pesticide research is the identification and recruitment of study participants, which is time consuming and costly, especially when the study site is in a remote location. We have demonstrated how GIS-based processes can be used to recruit participants, increase efficiency and enhance accuracy. The method that we used ultimately made it possible to collect biological samples from a specific demographic group within strictly defined exposure areas, with little advance knowledge of the location or population.


Assuntos
Atrazina , Produtos Agrícolas , Exposição Ambiental/análise , Sistemas de Informação Geográfica , Seleção de Pacientes , Praguicidas , Zea mays , Características da Família , Humanos , Illinois , Mapas como Assunto , Fotografação , Estudos Prospectivos , Estudos de Amostragem
3.
Methods Rep RTI Press ; MR-0023-1201: 1-24, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25364787

RESUMO

The pervasive and potentially severe economic, social, and public health consequences of infectious disease in farmed animals require that plans be in place for a rapid response. Increasingly, agent-based models are being used to analyze the spread of animal-borne infectious disease outbreaks and derive policy alternatives to control future outbreaks. Although the locations, types, and sizes of animal farms are essential model inputs, no public domain nationwide geospatial database of actual farm locations and characteristics currently exists in the United States. This report describes a novel method to develop a synthetic dataset that replicates the spatial distribution of poultry farms, as well as the type and number of birds raised on them. It combines county-aggregated poultry farm counts, land use/land cover, transportation, business, and topographic data to generate locations in the conterminous United States where poultry farms are likely to be found. Simulation approaches used to evaluate the accuracy of this method when compared to that of a random placement alternative found this method to be superior. The results suggest the viability of adapting this method to simulate other livestock farms of interest to infectious disease researchers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA