Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Exp Biol ; 227(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38456285

RESUMO

While much attention has been paid to understanding slip-related falls in humans, little has been focused on curvilinear paths despite their prevalence, distinct biomechanical demands and increased slipping threat. We determined the mechanics, compensatory stepping reactions and fall risk associated with slips during fixed-speed walking across ranges of path curvature, slipped foot and slip onset phase contexts possible in the community, which builds upon previous work by examining speed-independent effects of curvilinear walking. Twenty-one participants experienced 15 unconstrained slips induced by a wearable friction-reducing device as motion capture and harness load cell data were recorded. Falls were most likely after early stance slips to the inside foot and increased at tighter curvatures. Slip distance and peak velocity decreased as slips began later in stance phase, did not differ between feet, and accelerated on tighter paths. Slipping foot directions relative to heading transitioned from anterior (forward) to posterior (backward) as slips began later in stance, were ipsilateral (toward the slipping foot side) and contralateral (toward the opposite side) for the outside and inside foot, respectively, and became increasingly ipsilateral/contralateral on tighter curvatures. Compensatory steps were placed anteriorly and ipsilaterally after outside and inside foot slips, respectively, and lengthened at later onset phases for outside foot slips only. Our findings illustrate slip magnitude and fall risk relationships that suggest slip direction may influence the balance threat posed by a slip, imply that walking speed may modify slip likelihood, and indicate the most destabilizing curved walking contexts to target in future perturbation-based balance training approaches.


Assuntos
Marcha , Equilíbrio Postural , Humanos , Fenômenos Biomecânicos , Caminhada , Velocidade de Caminhada
2.
Sensors (Basel) ; 23(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905037

RESUMO

Response to challenging situations is important to avoid falls, especially after medial perturbations, which require active control. There is a lack of evidence on the relationship between the trunk's motion in response to perturbations and gait stability. Eighteen healthy adults walked on a treadmill at three speeds while receiving perturbations of three magnitudes. Medial perturbations were applied by translating the walking platform to the right at left heel contact. Trunk velocity changes in response to the perturbation were calculated and divided into the initial and the recovery phases. Gait stability after a perturbation was assessed using the margin of stability (MOS) at the first heel contact, MOS mean, and standard deviation for the first five strides after the perturbation onset. Faster speed and smaller perturbations led to a lower deviation of trunk velocity from the steady state, which can be interpreted as an improvement in response to the perturbation. Recovery was quicker after small perturbations. The MOS mean was associated with the trunk's motion in response to perturbations during the initial phase. Increasing walking speed may increase resistance to perturbations, while increasing the magnitude of perturbation leads to greater trunk motions. MOS is a useful marker of resistance to perturbations.


Assuntos
Marcha , Equilíbrio Postural , Adulto , Humanos , Equilíbrio Postural/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Velocidade de Caminhada , Movimento (Física) , Fenômenos Biomecânicos
3.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161822

RESUMO

The "total distance walked" obtained during a standardized walking test is an integral component of physical fitness and health status tracking in a range of consumer and clinical applications. Wearable inertial sensors offer the advantages of providing accurate, objective, and reliable measures of gait while streamlining walk test administration. The aim of this study was to develop an inertial sensor-based algorithm to estimate the total distance walked using older subjects with impaired fasting glucose (Study I), and to test the generalizability of the proposed algorithm in patients with Multiple Sclerosis (Study II). All subjects wore two inertial sensors (Opals by Clario-APDM Wearable Technologies) on their feet. The walking distance algorithm was developed based on 108 older adults in Study I performing a 400 m walk test along a 20 m straight walkway. The validity of the algorithm was tested using a 6-minute walk test (6MWT) in two sub-studies of Study II with different lengths of a walkway, 15 m (Study II-A, n = 24) and 20 m (Study II-B, n = 22), respectively. The start and turn around points were marked with lines on the floor while smaller horizontal lines placed every 1 m served to calculate the manual distance walked (ground truth). The proposed algorithm calculates the forward distance traveled during each step as the change in the horizontal position from each foot-flat period to the subsequent foot-flat period. The total distance walked is then computed as the sum of walk distances for each stride, including turns. The proposed algorithm achieved an average absolute error rate of 1.92% with respect to a fixed 400 m distance for Study I. The same algorithm achieved an absolute error rate of 4.17% and 3.21% with respect to an averaged manual distance for 6MWT in Study II-A and Study II-B, respectively. These results demonstrate the potential of an inertial sensor-based algorithm to estimate a total distance walked with good accuracy with respect to the manual, clinical standard. Further work is needed to test the generalizability of the proposed algorithm with different administrators and populations, as well as larger diverse cohorts.


Assuntos
Marcha , Caminhada , Idoso , Algoritmos , , Humanos , Teste de Caminhada
4.
J Neuroeng Rehabil ; 18(1): 1, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397401

RESUMO

BACKGROUND: Although a growing number of studies focus on the measurement and detection of freezing of gait (FoG) in laboratory settings, only a few studies have attempted to measure FoG during daily life with body-worn sensors. Here, we presented a novel algorithm to detect FoG in a group of people with Parkinson's disease (PD) in the laboratory (Study I) and extended the algorithm in a second cohort of people with PD at home during daily life (Study II). METHODS: In Study I, we described of our novel FoG detection algorithm based on five inertial sensors attached to the feet, shins and lumbar region while walking in 40 participants with PD. We compared the performance of the algorithm with two expert clinical raters who scored the number of FoG episodes from video recordings of walking and turning based on duration of the episodes: very short (< 1 s), short (2-5 s), and long (> 5 s). In Study II, a different cohort of 48 people with PD (with and without FoG) wore 3 wearable sensors on their feet and lumbar region for 7 days. Our primary outcome measures for freezing were the % time spent freezing and its variability. RESULTS: We showed moderate to good agreement in the number of FoG episodes detected in the laboratory (Study I) between clinical raters and the algorithm (if wearable sensors were placed on the feet) for short and long FoG episodes, but not for very short FoG episodes. When extending this methodology to unsupervised home monitoring (Study II), we found that percent time spent freezing and the variability of time spent freezing differentiated between people with and without FoG (p < 0.05), and that short FoG episodes account for 69% of the total FoG episodes. CONCLUSION: Our findings showed that objective measures of freezing in PD using inertial sensors on the feet in the laboratory are matching well with clinical scores. Although results found during daily life are promising, they need to be validated. Objective measures of FoG with wearable technology during community-living would be useful for managing this distressing feature of mobility disability in PD.


Assuntos
Algoritmos , Análise da Marcha/instrumentação , Transtornos Neurológicos da Marcha/diagnóstico , Doença de Parkinson/complicações , Dispositivos Eletrônicos Vestíveis , Idoso , Estudos de Coortes , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Gravação em Vídeo
5.
Mov Disord ; 35(5): 851-858, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32149427

RESUMO

BACKGROUND: As Parkinson's disease progresses, levodopa treatment loses efficacy, partly through the loss of the endogenous dopamine-synthesizing enzyme L-amino acid decarboxylase (AADC). In the phase I PD-1101 study, putaminal administration of VY-AADC01, an investigational adeno-associated virus serotype-2 vector for delivery of the AADC gene in patients with advanced Parkinson's disease, was well tolerated, improved motor function, and reduced antiparkinsonian medication requirements. OBJECTIVES: This substudy aimed to determine whether the timing and magnitude of motor response to intravenous levodopa changed in PD-1101 patients after VY-AADC01 administration. METHODS: Participants received 2-hour threshold (0.6 mg/kg/h) and suprathreshold (1.2 mg/kg/h) levodopa infusions on each of 2 days, both before and approximately 6 months after VY-AADC01. Infusion order was randomized and double blinded. Unified Parkinson's Disease Rating Scale motor scores, finger-tapping speeds, and dyskinesia rating scores were assessed every 30 minutes for 1 hour before and ≥3 hours after start of levodopa infusion. RESULTS: Of 15 PD-1101 patients, 13 participated in the substudy. Unified Parkinson's Disease Rating Scale motor score area under the curve responses to threshold and suprathreshold levodopa infusions increased by 168% and 67%, respectively, after VY-AADC01; finger-tapping speeds improved by 162% and 113%, and dyskinesia scores increased by 208% and 72%, respectively, after VY-AADC01. Adverse events (mild/moderate severity) were reported in 5 participants during levodopa infusions pre-VY-AADC01 and 2 participants post-VY-AADC01 administration. CONCLUSIONS: VY-AADC01 improved motor responses to intravenous levodopa given under controlled conditions. These data and findings from the parent study support further clinical development of AADC gene therapy for people with Parkinson's disease. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesias , Doença de Parkinson , Antiparkinsonianos/uso terapêutico , Terapia Genética , Humanos , Levodopa , Doença de Parkinson/tratamento farmacológico
6.
J Neuroeng Rehabil ; 17(1): 159, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261625

RESUMO

BACKGROUND AND PURPOSE: Recent findings suggest that a gait assessment at a discrete moment in a clinic or laboratory setting may not reflect functional, everyday mobility. As a step towards better understanding gait during daily life in neurological populations, we compared gait measures that best discriminated people with multiple sclerosis (MS) and people with Parkinson's Disease (PD) from their respective, age-matched, healthy control subjects (MS-Ctl, PD-Ctl) in laboratory tests versus a week of daily life monitoring. METHODS: We recruited 15 people with MS (age mean ± SD: 49 ± 10 years), 16 MS-Ctl (45 ± 11 years), 16 people with idiopathic PD (71 ± 5 years), and 15 PD-Ctl (69 ± 7 years). Subjects wore 3 inertial sensors (one each foot and lower back) in the laboratory followed by 7 days during daily life. Mann-Whitney U test and area under the curve (AUC) compared differences between PD and PD-Ctl, and between MS and MS-Ctl in the laboratory and in daily life. RESULTS: Participants wore sensors for 60-68 h in daily life. Measures that best discriminated gait characteristics in people with MS and PD from their respective control groups were different between the laboratory gait test and a week of daily life. Specifically, the toe-off angle best discriminated MS versus MS-Ctl in the laboratory (AUC [95% CI] = 0.80 [0.63-0.96]) whereas gait speed in daily life (AUC = 0.84 [0.69-1.00]). In contrast, the lumbar coronal range of motion best discriminated PD versus PD-Ctl in the laboratory (AUC = 0.78 [0.59-0.96]) whereas foot-strike angle in daily life (AUC = 0.84 [0.70-0.98]). AUCs were larger in daily life compared to the laboratory. CONCLUSIONS: Larger AUC for daily life gait measures compared to the laboratory gait measures suggest that daily life monitoring may be more sensitive to impairments from neurological disease, but each neurological disease may require different gait outcome measures.


Assuntos
Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Monitorização Ambulatorial , Esclerose Múltipla Recidivante-Remitente/complicações , Doença de Parkinson/complicações , Adulto , Idoso , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Laboratórios , Masculino , Pessoa de Meia-Idade , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Doença de Parkinson/fisiopatologia , Dispositivos Eletrônicos Vestíveis
7.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053703

RESUMO

Although the use of wearable technology to characterize gait disorders in daily life is increasing, there is no consensus on which specific gait bout length should be used to characterize gait. Clinical trialists using daily life gait quality as study outcomes need to understand how gait bout length affects the sensitivity and specificity of measures to discriminate pathological gait as well as the reliability of gait measures across gait bout lengths. We investigated whether Parkinson's disease (PD) affects how gait characteristics change as bout length changes, and how gait bout length affects the reliability and discriminative ability of gait measures to identify gait impairments in people with PD compared to neurotypical Old Adults (OA). We recruited 29 people with PD and 20 neurotypical OA of similar age for this study. Subjects wore 3 inertial sensors, one on each foot and one over the lumbar spine all day, for 7 days. To investigate which gait bout lengths should be included to extract gait measures, we determined the range of gait bout lengths available across all subjects. To investigate if the effect of bout length on each gait measure is similar or not between subjects with PD and OA, we used a growth curve analysis. For reliability and discriminative ability of each gait measure as a function of gait bout length, we used the intraclass correlation coefficient (ICC) and area under the curve (AUC), respectively. Ninety percent of subjects walked with a bout length of less than 53 strides during the week, and the majority (>50%) of gait bouts consisted of less than 12 strides. Although bout length affected all gait measures, the effects depended on the specific measure and sometimes differed for PD versus OA. Specifically, people with PD did not increase/decrease cadence and swing duration with bout length in the same way as OA. ICC and AUC characteristics tended to be larger for shorter than longer gait bouts. Our findings suggest that PD interferes with the scaling of cadence and swing duration with gait bout length. Whereas control subjects gradually increased cadence and decreased swing duration as bout length increased, participants with PD started with higher than normal cadence and shorter than normal stride duration for the smallest bouts, and cadence and stride duration changed little as bout length increased, so differences between PD and OA disappeared for the longer bout lengths. Gait measures extracted from shorter bouts are more common, more reliable, and more discriminative, suggesting that shorter gait bouts should be used to extract potential digital biomarkers for people with PD.


Assuntos
Marcha , Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Humanos , Masculino , Doença de Parkinson/diagnóstico , Reprodutibilidade dos Testes , Caminhada
8.
Arthroscopy ; 33(12): 2110-2116, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28866347

RESUMO

PURPOSE: To develop a model using wearable inertial sensors to assess the performance of orthopaedic residents while performing a diagnostic knee arthroscopy. METHODS: Fourteen subjects performed a diagnostic arthroscopy on a cadaveric right knee. Participants were divided into novices (5 postgraduate year 3 residents), intermediates (5 postgraduate year 4 residents), and experts (4 faculty) based on experience. Arm movement data were collected by inertial measurement units (Opal sensors) by securing 2 sensors to each upper extremity (dorsal forearm and lateral arm) and 2 sensors to the trunk (sternum and lumbar spine). Kinematics of the elbow and shoulder joints were calculated from the inertial data by biomechanical modeling based on a sequence of links connected by joints. Range of motion required to complete the procedure was calculated for each group. Histograms were used to compare the distribution of joint positions for an expert, intermediate, and novice. RESULTS: For both the right and left upper extremities, skill level corresponded well with shoulder abduction-adduction and elbow prono-supination. Novices required on average 17.2° more motion in the right shoulder abduction-adduction plane than experts to complete the diagnostic arthroscopy (P = .03). For right elbow prono-supination (probe hand), novices required on average 23.7° more motion than experts to complete the procedure (P = .03). Histogram data showed novices had markedly more variability in shoulder abduction-adduction and elbow prono-supination compared with the other groups. CONCLUSIONS: Our data show wearable inertial sensors can measure joint kinematics during diagnostic knee arthroscopy. Range-of-motion data in the shoulder and elbow correlated inversely with arthroscopic experience. Motion pattern-based analysis shows promise as a metric of resident skill acquisition and development in arthroscopy. CLINICAL RELEVANCE: Wearable inertial sensors show promise as metrics of arthroscopic skill acquisition among residents.


Assuntos
Artroscopia/educação , Competência Clínica/estatística & dados numéricos , Articulação do Cotovelo/fisiologia , Articulação do Ombro/fisiologia , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Cadáver , Humanos , Internato e Residência/métodos , Articulação do Joelho/cirurgia , Ortopedia/educação , Amplitude de Movimento Articular
9.
Mov Disord ; 30(10): 1361-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26095928

RESUMO

BACKGROUND: The effects of levodopa on balance and gait function in people with Parkinson's disease (PD) is controversial. This study compared the relative responsiveness to l-dopa on six domains of balance and gait: postural sway in stance; gait pace; dynamic stability; gait initiation; arm swing; and turning in people with mild and severe PD, with and without dyskinesia. METHODS: We studied 104 subjects with idiopathic PD (H & Y II [n = 52] and III-IV [n = 52]) and 64 age-matched controls. Subjects performed a mobility task in the practical off state and on l-dopa: standing quietly for 30 seconds, initiating gait, walking 7 meters, and turning 180 degrees. Thirty-four measures of mobility were computed from inertial sensors. Standardized response means were used to determine relative responsiveness to l-dopa. RESULTS: The largest improvements with l-dopa were found for arm swing and pace-related gait measures. Gait dynamic stability was unaffected by PD and not responsive to l-dopa. l-dopa reduced turning duration, but only in subjects with severe PD. In contrast to gait, postural sway in quiet standing increased with l-dopa, especially in the more severely affected subjects. The increase in postural sway, as well as decrease in turning duration and exaggerated arm swing with l-dopa was observed only for subjects with dyskinesia at the time of testing. CONCLUSIONS: The observed spectrum of l-dopa responsiveness in balance and gait measures suggests that multiple neural circuits control balance and gait. Many of the negative effects of l-dopa may be directly or indirectly caused by dyskinesia.


Assuntos
Antiparkinsonianos/farmacologia , Marcha/efeitos dos fármacos , Levodopa/farmacologia , Avaliação de Resultados em Cuidados de Saúde , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Equilíbrio Postural/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Antiparkinsonianos/efeitos adversos , Teste de Esforço , Feminino , Marcha/fisiologia , Humanos , Levodopa/efeitos adversos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural/fisiologia , Índice de Gravidade de Doença
10.
J Biomech ; 166: 112045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484652

RESUMO

The concept of the 'extrapolated center of mass (XcoM)', introduced by Hof et al., (2005, J. Biomechanics 38 (1), p. 1-8), extends the classical inverted pendulum model to dynamic situations. The vector quantity XcoM combines the center of mass position plus its velocity divided by the pendulum eigenfrequency. In this concept, the margin of stability (MoS), i.e., the minimum signed distance from the XcoM to the boundaries of the base of support was proposed as a measure of dynamic stability. Here we describe the conceptual evolution of the XcoM, discuss key considerations in the estimation of the XcoM and MoS, and provide a critical perspective on the interpretation of the MoS as a measure of instantaneous mechanical stability.


Assuntos
Marcha , Equilíbrio Postural , Fenômenos Biomecânicos , Caminhada
11.
J Neurol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727734

RESUMO

Older adults, as well as those with certain neurological disorders, may compensate for poor neural control of postural stability by widening their base of foot support while walking. However, the extent to which this wide-based gait improves postural stability or affects postural control strategies has not been explored. People with idiopathic Parkinson's disease (iPD, n = 72), frontal gait disorders (FGD, n = 16), and healthy older adults (n = 32) performed walking trials at their preferred speed over an 8-m-long, instrumented walkway. People with iPD were tested in their OFF medication state. Analyses of covariance were performed to determine the associations between stride width and measures of lateral stability control. People with FGD exhibited a wide-based gait compared to both healthy older adults and iPD. An increased stride width was associated with an increase in lateral margin of stability in FGD. Unlike healthy older adults or iPD, people with FGD did not externally rotate their feet (toe-out angle) or shift their center of pressure laterally to aid lateral dynamic stability during walking but slowed their gait instead to increase stability. By adopting a slow, wide-based gait, people with FGD take advantage of the passive, pendular mechanics of walking.

12.
J Biomech ; 157: 111714, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423120

RESUMO

The use of wearable sensors for the collection of lower extremity biomechanical data is increasing in popularity, in part due to the ease of collecting data and the ability to capture movement outside of traditional biomechanics laboratories. Consequently, an increasing number of researchers are facing the challenges that come with utilizing the data captured by wearable sensors. These challenges include identifying/calculating meaningful measures from unfamiliar data types (measures of acceleration and angular velocity instead of positions and joint angles), defining sensor-to-segment alignments for calculating traditional biomechanics metrics, using reduced sensor sets and machine learning to predict unmeasured signals, making decisions about when and how to make algorithms freely available, and developing or replicating methods to perform basic processing tasks such as recognizing activities of interest or identifying gait events. In this perspective article, we present our own approaches to common challenges in lower extremity biomechanics research using wearable sensors and share our perspectives on approaching several of these challenges. We present these perspectives with examples that come mostly from gait research, but many of the concepts also apply to other contexts where researchers may use wearable sensors. Our goal is to introduce common challenges to new users of wearable sensors, and to promote dialogue amongst experienced users towards best practices.


Assuntos
Movimento , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Extremidade Inferior , Aceleração , Marcha
13.
Sci Rep ; 12(1): 17801, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274104

RESUMO

Curvilinear walking is common, causing limb- and radius-dependent asymmetries that distinguish it from straight walking and elevated friction demands that increase slip-and-fall risk. However, it is unclear how aspects of curvilinear walking influence the slip perturbations experienced. We cross-sectionally examined how three biomechanical slip contexts (slip onset phase, slipped foot relative to the path, path radius) influence slip direction, distance, and peak velocity. Eighteen young adults experienced unconstrained inside or outside foot slips during early, mid-, or late stance while following 1.0- or 2.0-m radius semicircular paths. We derived slip mechanics from motion-capture data and assessed their dependence on slip context using mixed-effects models. As slip onset phase progressed, slip directions exhibited an anterior-to-posterior transition, shortened mediolaterally, and accelerated anteroposteriorly. The slipped foot modified the direction transition, with inside and outside foot slips moving contralaterally and ipsilaterally, respectively. Inside foot slips were shorter and slower mediolaterally and longer anteroposteriorly than outside foot slips. Increasing path radius caused slips with greater mediolateral direction components. We show a range of context-dependent slips are possible, likely due to instantaneous magnitudes and orientations of shear ground reaction forces. Our results contribute to a comprehensive understanding of walking slips, which fall prevention methods can leverage.


Assuntos
Marcha , Caminhada , Adulto Jovem , Humanos , Fenômenos Biomecânicos ,
14.
J Biomech ; 125: 110610, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34252823

RESUMO

In prosthetic walking mediolateral balance is compromised due to the lack of active ankle control, by moments of force, in the prosthetic limb. Active control is reduced to the hip strategy, and passive mechanical stability depends on the curvature of the prosthetic foot under load. Mediolateral roll-over curvatures of prosthetic feet are largely unknown. In this study we determined the mediolateral roll-over characteristics of various prosthetic feet and foot-shoe combinations. Characteristics were determined by means of an inverted pendulum-like apparatus. The relationship between the centre of pressure (CoP) and the shank angle was measured and converted to roll-over shape and effective radius of curvature. Further, hysteresis (i.e., lagging in CoP displacement due to material compliance or slip) at vertical shank angle was determined from the hysteresis curve. Passive mechanical stability varied widely, though all measured foot-shoe combinations were relatively compliant. Mediolateral motion of the CoP ranged between 4 mm and 40 mm, thereby remaining well within each foot's physical width. Derived roll-over radii of curvature are also small, with an average of 102 mm. Hysteresis ranges between 20% and 115% of total CoP displacement and becomes more pronounced when adding a shoe. This may be due to slipping of the foot core in its cosmetic cover, or the foot in the shoe. Slip may be disadvantageous for balance control by limiting mediolateral travel of the CoP. It may therefore be clinically relevant to eliminate mediolateral slip in prosthetic foot design.


Assuntos
Membros Artificiais , Fenômenos Biomecânicos , , Marcha , Desenho de Prótese , Sapatos , Caminhada
15.
Gait Posture ; 84: 108-113, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33302221

RESUMO

BACKGROUND: There is currently no consensus about standardized gait bout definitions when passively monitoring walking during normal daily life activities. It is also not known how different definitions of a gait bout in daily life monitoring affects the ability to distinguish pathological gait quality. Specifically, how many seconds of a pause with no walking indicates an end to one gait bout and the start of another bout? In this study, we investigated the effect of 3 gait bout definitions on the discriminative ability to distinguish quality of walking in people with multiple sclerosis (MS) from healthy control subjects (HC) during a week of daily living. METHODS: 15 subjects with MS and 16 HC wore instrumented socks on each foot and one Opal sensor over the lower lumbar area for a week of daily activities for at least 8 h/day. Three gait bout definitions were based on the length of the pause between the end of one gait bout and start of another bout (1.25 s, 2.50 s, and 5.0 s pause). Area under the curve (AUC) was used to compare gait quality measures in MS versus HC. RESULTS: Total number of gait bouts over the week were statistically significantly different across bout definitions, as expected. However, AUCs of gait quality measures (such as gait speed, stride length, stride time) discriminating people with MS from HC were not different despite the 3 bout definitions. SIGNIFICANCE: Quality of gait measures that discriminate MS from HC during daily life are not influenced by the length of a gait bout, despite large differences in quantity of gait across bout definitions. Thus, gait quality measures in people with MS versus controls can be compared across studies using different gait bout definitions with pause lengths ≤5 s.


Assuntos
Marcha/fisiologia , Esclerose Múltipla/fisiopatologia , Qualidade de Vida/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
IEEE Trans Biomed Eng ; 68(9): 2615-2625, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33180719

RESUMO

BACKGROUND: One difficulty in turning algorithm design for inertial sensors is detecting two discrete turns in the same direction, close in time. A second difficulty is under-estimation of turn angle due to short-duration hesitations by people with neurological disorders. We aimed to validate and determine the generalizability of a: I. Discrete Turn Algorithm for variable and sequential turns close in time and II: Merged Turn Algorithm for a single turn angle in the presence of hesitations. METHODS: We validated the Discrete Turn Algorithm with motion capture in healthy controls (HC, n = 10) performing a spectrum of turn angles. Subsequently, the generalizability of the Discrete Turn Algorithm and associated, Merged Turn Algorithm were tested in people with Parkinson's disease (PD, n = 124), spinocerebellar ataxia (SCA, n = 51), and HC (n = 125). RESULTS: The Discrete Turn Algorithm shows improved agreement with optical motion capture and with known turn angles, compared to our previous algorithm by El-Gohary et al. The Merged Turn algorithm that merges consecutive turns in the same direction with short hesitations resulted in turn angle estimates closer to a fixed 180-degree turn angle in the PD, SCA, and HC subjects compared to our previous turn algorithm. Additional metrics were proposed to capture turn hesitations in PD and SCA. CONCLUSION: The Discrete Turn Algorithm may be particularly useful to characterize turns when the turn angle is unknown, i.e., during free-living conditions. The Merged Turn algorithm is recommended for clinical tasks in which the single-turn angle is known, especially for patients who hesitate while turning.


Assuntos
Doença de Parkinson , Algoritmos , Humanos , Microcirurgia
17.
Exp Brain Res ; 201(3): 527-34, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19902193

RESUMO

What happens to the mental representation of our body when the actual anatomy of our body changes? We asked 18 able-bodied controls, 18 patients with a lower limb amputation and a patient with rotationplasty to perform a laterality judgment task. They were shown illustrations of feet in different orientations which they had to classify as left or right limb. This laterality recognition task, originally introduced by Parsons in Cognit Psychol 19:178-241, (1987), is known to elicit implicit mental rotation of the subject's own body part. However, it can also be solved by mental transformation of the visual stimuli. Despite the anatomical changes in the body periphery of the amputees and of the rotationplasty patient, no differences in their ability to identify illustrations of their affected versus contralateral limb were found, while the group of able-bodied controls showed clear laterality effects. These findings are discussed in the context of various strategies for mental rotation versus the maintenance of an intact prototypical body structural description.


Assuntos
Amputados/psicologia , Imagem Corporal , Pé/fisiologia , Imaginação/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Idoso , Avaliação da Deficiência , Dominância Cerebral/fisiologia , Função Executiva/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Processos Mentais/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Psicofisiologia , Rotação , Percepção Visual/fisiologia , Volição/fisiologia
18.
IEEE Trans Neural Syst Rehabil Eng ; 28(6): 1507, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32310778

RESUMO

In [1], the centripetal accelerations, ac, in Figures 2, 4, 5, 6, 7, and 8 are presented in units of g, not m/s2 (1 g = 9.80665 m/s2).

19.
IEEE Trans Neural Syst Rehabil Eng ; 28(3): 629-636, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031943

RESUMO

There is growing interest in using inertial sensors to continuously monitor gait during free-living mobility. Inertial sensors can provide many gait measures, but they struggle to capture the spatial stability of the center-of-mass due to limitations estimating sensor-to-sensor distance. While the margin of stability (MoS) is an established outcome describing the instantaneous mechanical stability of gait relating to fall-risk, methods to estimate the MoS from inertial sensors have been lacking. Here, we developed and tested a framework, based on centripetal acceleration, to determine a correlate for the lateral MoS using inertial sensors during walking with or without turning. Using three synchronized sensors located bilaterally on the feet and lumbar spine, the average centripetal acceleration over the subsequent step can be used as a correlate for lateral MoS. Relying only on a single sensor on the lumbar spine yielded similar results if the stance foot can be determined from other means. Additionally, the centripetal acceleration correlate of lateral MoS demonstrates clear differences between walking and turning, inside and outside turning limbs, and speed. While limitations and assumptions need to be considered when implemented in practice, this method presents a novel correlate for the lateral MoS during walking and turning using inertial sensors, although further validation is required for other activities and populations.


Assuntos
Marcha , Caminhada , Aceleração , Acidentes por Quedas , , Humanos
20.
Gait Posture ; 75: 142-148, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683184

RESUMO

BACKGROUND: A relationship exists between step width and energy expenditure, yet the contribution of dynamic stability to energy expenditure is not completely understood. Chronic obstructive pulmonary disease (COPD) patients' energy expenditure is increased due to airway obstruction. Further, they have a higher prevalence of falls and balance deficits compared to controls. RESEARCH QUESTION: Is dynamic stability different between COPD patients and controls; and is the association between dynamic stability and energy expenditure different between groups? METHODS: Seventeen COPD patients (64.3 ±â€¯7.6years) and 23 controls (59.9 ±â€¯6.6years) walked on a treadmill at three speeds: self-selected walking speed (SSWS), -20%SSWS, and +20%SSWS. Mean and variability (standard deviation) of the anterior-posterior (AP) and medio-lateral (ML) margins of stability (MOS) were compared between groups and speed conditions, while controlling for covariates. Additionally, their association to metabolic power was examined. RESULTS: The association between stability and power did not significantly differ between groups. However, increased metabolic power was associated with decreased MOS AP mean (p < 0.0001), independent of speed. Increased MOS AP variability (p = 0.01) and increased SSWS (p's < 0.05) were associated with increased metabolic power. The MOS ML mean for COPD patients was greater than that of healthy patients (p = 0.02). MOS AP mean decreased as speed increased and differed by group (p = 0.048). For COPD patients, a plateau was observed at SSWS and did not decrease further at +20%SSWS compared to controls. MOS AP variability (p < 0.0001), MOS ML mean (p < 0.0001), and MOS ML variability (p = 0.003) decreased as speed increased and did not differ by group. SIGNIFICANCE: Patients with COPD operate at the upper limit of their metabolic reserve due to an increased cost of breathing. To compensate for their lack of stability, they walked with larger margins of stability in the ML direction, instead of changing the stability margins in the AP direction, due to its association with energy expenditure.


Assuntos
Metabolismo Energético/fisiologia , Equilíbrio Postural/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Caminhada/fisiologia , Idoso , Estudos de Casos e Controles , Teste de Esforço , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Velocidade de Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA