Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Annu Rev Entomol ; 68: 13-29, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36130040

RESUMO

Conservation biological control aims to enhance populations of natural enemies of insect pests in crop habitats, typically by intentional provision of flowering plants as food resources. Ideally, these flowering plants should be inherently attractive to natural enemies to ensure that they are frequently visited. We review the chemical ecology of floral resources in a conservation biological control context, with a focus on insect parasitoids. We highlight the role of floral volatiles as semiochemicals that attract parasitoids to the food resources. The discovery that nectar-inhabiting microbes can be hidden players in mediating parasitoid responses to flowering plants has highlighted the complexity of the interactions between plants and parasitoids. Furthermore, because food webs in agroecosystems do not generally stop at the third trophic level, we also consider responses of hyperparasitoids to floral resources. We thus provide an overview of floral compounds as semiochemicals from a multitrophic perspective, and we focus on the remaining questions that need to be addressed to move the field forward.


Assuntos
Vespas , Animais , Vespas/fisiologia , Ecologia , Cadeia Alimentar , Insetos/fisiologia , Ecossistema
2.
Am Nat ; 202(4): E104-E120, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792913

RESUMO

AbstractMany animals lay their eggs in clusters. Eggs on the periphery of clusters can be at higher risk of mortality. We asked whether the most commonly occurring clutch sizes in pentatomid bugs could result from geometrical arrangements that maximize the proportion of eggs in the cluster's interior. Although the most common clutch sizes do not correspond with geometric optimality, stink bugs do tend to lay clusters of eggs in shapes that protect increasing proportions of their offspring as clutch sizes increase. We also considered whether ovariole number, an aspect of reproductive anatomy that may be a fixed trait across many pentatomids, could explain observed distributions of clutch sizes. The most common clutch sizes across many species correspond with multiples of ovariole number. However, there are species with the same number of ovarioles that lay clutches of widely varying size, among which multiples of ovariole number are not overrepresented. In pentatomid bugs, reproductive anatomy appears to be more important than egg mass geometry in determining clutch size uniformity. In addition, our analysis demonstrates that groups of animals with little variation in ovariole number may nonetheless lay a broad range of clutch shapes and sizes.


Assuntos
Tamanho da Ninhada , Animais , Fenótipo
3.
Microb Ecol ; 86(1): 364-376, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913610

RESUMO

Floral nectar is ubiquitously colonized by a variety of microorganisms among which yeasts and bacteria are the most common. Microorganisms inhabiting floral nectar can alter several nectar traits, including nectar odor by producing microbial volatile organic compounds (mVOCs). Evidence showing that mVOCs can affect the foraging behavior of insect pollinators is increasing in the literature, whereas the role of mVOCs in altering the foraging behavior of third-trophic level organisms such as insect parasitoids is largely overlooked. Parasitoids are frequent visitors of flowers and are well known to feed on nectar. In this study, we isolated bacteria inhabiting floral nectar of buckwheat, Fagopyrum esculentum (Polygonales: Polygonaceae), to test the hypothesis that nectar bacteria affect the foraging behavior of the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae) via changes in odors of nectar. In behavioral assays, we found that T. basalis wasps are attracted toward nectar fermented by 4 out of the 14 bacterial strains isolated, which belong to Staphylococcus epidermidis, Terrabacillus saccharophilus (both Firmicutes), Pantoea sp. (Proteobacteria), and Curtobacterium sp. (Actinobacteria). Results of chemical investigations revealed significant differences in the volatile blend composition of nectars fermented by the bacterial isolates. Our results indicate that nectar-inhabiting bacteria play an important role in the interactions between flowering plants and foraging parasitoids. These results are also relevant from an applied perspective as flowering resources, such as buckwheat, are largely used in agriculture to promote conservation biological control of insect pests.


Assuntos
Odorantes , Néctar de Plantas , Animais , Insetos , Flores , Bactérias , Polinização
4.
Annu Rev Entomol ; 67: 143-161, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34606363

RESUMO

Hyperparasitoids are some of the most diverse members of insect food webs. True hyperparasitoids parasitize the larvae of other parasitoids, reaching these larvae with their ovipositor through the herbivore that hosts the parasitoid larva. During pupation, primary parasitoids also may be attacked by pseudohyperparasitoids that lay their eggs on the parasitoid (pre)pupae. By attacking primary parasitoids, hyperparasitoids may affect herbivore population dynamics, and they have been identified as a major challenge in biological control. Over the past decades, research, especially on aphid- and caterpillar-associated hyperparasitoids, has revealed that hyperparasitoids challenge rules on nutrient use efficiency in trophic chains, account for herbivore outbreaks, or stabilize competitive interactions in lower trophic levels, and they may use cues derived from complex interaction networks to locate their hosts. This review focuses on the fascinating ecology of hyperparasitoids related to how they exploit and locate their often inconspicuous hosts and the insect community processes in which hyperparasitoids are prominent players.


Assuntos
Vespas , Animais , Ecologia , Cadeia Alimentar , Interações Hospedeiro-Parasita , Larva
5.
Mol Ecol ; 30(18): 4567-4583, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245612

RESUMO

There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid-associated symbiont belonging to the group of ichnoviruses which affects the strength of plant-insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral-encoded proteins) and quantitatively (abundance of several caterpillar-resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant-mediated ichnovirus-induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore-associated symbionts on plant-insect-parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective.


Assuntos
Polydnaviridae , Vespas , Animais , Herbivoria , Interações Hospedeiro-Parasita , Larva , Proteômica
6.
J Theor Biol ; 527: 110821, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34214568

RESUMO

The quality of hosts for a parasitoid wasp may be influenced by attributes such as host size or species, with high quality for successful development usually coincident with high quality for larger offspring. This is not always the case: for the Scelionid wasp Trissolcus basalis, oviposition in eggs of the Brown Marmorated Stink Bug, Halyomorpha halys, rather than of the normal host, the Southern Green Stink Bug, Nezara viridula, leads to lower offspring survival, but survivors can be unusually large. Adult female T. basalis engage in contests for host access. As larger contestants are typically favoured in contests between parasitoids, the larger size of surviving offspring may compensate for the mortality of others. We construct a general game-theoretic model to explore whether size advantage can sustain a maternal preference to utilize a more deadly host species. We find that size advantage alone is unlikely to sustain a shift in host preference, yet such an outcome is possible when size asymmetries act simultaneously with advantages in host possession (ownership effect). Halyomorpha halys is an invasive pest of major agro-economic importance in Europe and the Americas, and use of its eggs as hosts by native parasitoids such as T. basalis has been seen as an evolutionary trap due to their high developmental mortality. Our model suggests that the recently discovered effect of host choice on offspring size may provide an escape from the trap via effects on contest biology of T. basalis which could foster a more stable association with H. halys. An evolutionary shift in the reproductive value of H. halys could increase the efficiency of T. basalis as a biological control agent of this invasive stink bug pest.


Assuntos
Heterópteros , Vespas , Animais , Evolução Biológica , Europa (Continente) , Feminino , Reprodução
7.
J Chem Ecol ; 47(4-5): 455-462, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33713251

RESUMO

Plant growth-promoting fungi belonging to genus Trichoderma are known to help plants when dealing with biotic stressors by enhancing plant defenses. While beneficial effects of Trichoderma spp. against plant pathogens have long been documented, fewer studies have investigated their effect on insect pests. Here, we studied the impact of Trichoderma root colonization on the plant defense responses against stink bug feeding attack. For this purpose, a model system consisting of tomato plant, Solanum lycopersicum cv Dwarf San Marzano, Trichoderma harzianum strain T22 and the southern green stink bug, Nezara viridula, was used. We firstly determined stink bug performance in terms of relative growth rate and survival on tomato plants inoculated by T. harzianum T22. Then, we evaluated relative expression of plant defense-related genes on inoculated plants induced by stink bug feeding. We found evidence that T. harzianum T22 affects tomato defense responses against N. viridula nymphs leading to reduction of growth rate. Our results also showed that T. harzianum T22 enhances plant direct defenses by an early increase of transcript levels of jasmonic acid marker genes. Yet this effect was time-dependent and only detected 8 h after herbivore induction. Taken together, our findings provide better understanding on the mechanisms underlying tomato induced resistance against herbivorous stink bugs.


Assuntos
Ciclopentanos/metabolismo , Heterópteros/metabolismo , Hypocreales/metabolismo , Oxilipinas/metabolismo , Solanum lycopersicum/metabolismo , Animais , Feminino , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Herbivoria , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Raízes de Plantas/metabolismo , Sementes/metabolismo , Transdução de Sinais , Simbiose , Fatores de Tempo , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 115(20): 5205-5210, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712841

RESUMO

Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.


Assuntos
Borboletas/parasitologia , Interações Hospedeiro-Parasita , Larva/parasitologia , Plantas/metabolismo , Polydnaviridae/fisiologia , Peçonhas/administração & dosagem , Vespas/parasitologia , Animais , Borboletas/fisiologia , Borboletas/virologia , Ecossistema , Regulação da Expressão Gênica de Plantas , Larva/fisiologia , Larva/virologia , Plantas/parasitologia , Plantas/virologia , Simbiose , Vespas/fisiologia , Vespas/virologia
9.
Annu Rev Entomol ; 65: 171-190, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31589823

RESUMO

Parasitoids depend on other insects for the development of their offspring. Their eggs are laid in or on a host insect that is consumed during juvenile development. Parasitoids harbor a diversity of microbial symbionts including viruses, bacteria, and fungi. In contrast to symbionts of herbivorous and hematophagous insects, parasitoid symbionts do not provide nutrients. Instead, they are involved in parasitoid reproduction, suppression of host immune responses, and manipulation of the behavior of herbivorous hosts. Moreover, recent research has shown that parasitoid symbionts such as polydnaviruses may also influence plant-mediated interactions among members of plant-associated communities at different trophic levels, such as herbivores, parasitoids, and hyperparasitoids. This implies that these symbionts have a much more extended phenotype than previously thought. This review focuses on the effects of parasitoid symbionts on direct and indirect species interactions and the consequences for community ecology.


Assuntos
Insetos/microbiologia , Animais , Cadeia Alimentar , Interações Hospedeiro-Parasita , Insetos/parasitologia , Microbiota , Fenótipo , Simbiose
10.
Oecologia ; 189(3): 699-709, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30725370

RESUMO

Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of the herbivore species and its parasitization status can affect the composition of HIPV emission, hyperparasitoids encounter considerable variation in HIPVs during host location. Here, we combined laboratory and field experiments to investigate the role of HIPVs in host selection of hyperparasitoids that search for hosts in a multi-parasitoid multi-herbivore context. In a wild Brassica oleracea-based food web, the hyperparasitoid Lysibia nana preferred HIPVs emitted in response to caterpillars parasitized by the gregarious host Cotesia glomerata over the non-host Hyposoter ebeninus. However, no plant-mediated discrimination occurred between the solitary host C. rubecula and the non-host H. ebeninus. Under both laboratory and field conditions, hyperparasitoid responses were not affected by the herbivore species (Pieris brassicae or P. rapae) in which the three primary parasitoid species developed. Our study shows that HIPVs are an important source of information within multitrophic interaction networks allowing hyperparasitoids to find their preferred hosts in heterogeneous environments.


Assuntos
Borboletas , Vespas , Animais , Cadeia Alimentar , Herbivoria , Interações Hospedeiro-Parasita , Larva
11.
Ecol Lett ; 21(7): 957-967, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656523

RESUMO

Microbial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant-insect interactions. Although plant-associated and herbivore-associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third-trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development. Here, we show that such third-trophic level symbionts act in combination with venom to affect plant-mediated interactions by reducing colonisation of subsequent herbivore species. This ecological effect correlated with changes induced by polydnaviruses and venom in caterpillar salivary glands and in plant defence responses to herbivory. Because thousands of parasitoid species are associated with mutualistic symbiotic viruses in an intimate, specific relationship, our findings may represent a novel and widespread ecological phenomenon in plant-insect interactions.


Assuntos
Herbivoria , Interações Hospedeiro-Parasita , Vespas , Animais , Insetos , Parasitos
12.
Oecologia ; 179(1): 163-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25953114

RESUMO

In response to insect herbivory, plants emit volatile organic compounds which may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. In nature, plants are often attacked by multiple herbivores, but the majority of studies which have investigated indirect plant defenses to date have focused on the recruitment of different parasitoid species in a single-herbivore context. Here, we report our investigation on the attraction of egg parasitoids of lepidopteran hosts (Trichogramma brassicae and T. evanescens) toward plant volatiles induced by different insect herbivores in olfactometer bioassays. We used a system consisting of a native crucifer, Brassica nigra, two naturally associated herbivores [the butterfly Pieris brassicae (eggs and caterpillars) and the aphid Brevicoryne brassicae] and an alien invasive herbivore (eggs and caterpillars of the moth Spodoptera exigua). We found that Trichogramma wasps were attracted by volatiles induced in the plants by P. brassicae eggs, but not by those induced in the plants by S. exigua eggs, indicating the specificity of the plant responses toward lepidopteran herbivores. The results of the chemical analysis revealed significant differences between the volatile blends emitted by plants in response to attack by P. brassicae and S. exigua eggs which were in agreement with the behavioural observations. We investigated the attraction of Trichogramma wasps toward P. brassicae egg-induced volatiles in plants simultaneously attacked by larvae and nymphs of different non-hosts. The two chewing caterpillars P. brassicae and S. exigua, but not the phloem-feeding aphid B. brassicae, can disrupt the attraction of Trichogramma species toward P. brassicae egg-induced volatiles. Indirect plant defenses are discussed in the context of multiple herbivory by evaluating the importance of origin, dietary specialization and feeding guild of different attackers on the recruitment of egg-killing parasitoids.


Assuntos
Borboletas/fisiologia , Herbivoria , Mostardeira/química , Feromônios/química , Spodoptera/parasitologia , Compostos Orgânicos Voláteis/química , Vespas/fisiologia , Animais , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Parasita , Larva/parasitologia , Larva/fisiologia , Mostardeira/parasitologia , Óvulo/parasitologia , Óvulo/fisiologia , Spodoptera/fisiologia
13.
PLoS One ; 19(5): e0304220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771894

RESUMO

There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.


Assuntos
Beauveria , Capsicum , Oviposição , Vespas , Animais , Beauveria/fisiologia , Capsicum/parasitologia , Capsicum/microbiologia , Vespas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Feminino , Trichoderma/fisiologia , Interações Hospedeiro-Parasita , Óvulo , Herbivoria
14.
Curr Opin Insect Sci ; 60: 101116, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741616

RESUMO

Floral nectar is frequently colonized by microbes among which bacteria and yeasts are the most abundant. These microbes have the ability to alter nectar characteristics with consequences for the whole community of flower-visiting insects. Recent research carried out on natural enemies of insect herbivores has shown that microbe-mediated changes in nectar traits can influence the foraging behavior and life history traits of parasitoids. The production of microbial volatile organic compounds can affect the attraction of parasitoids to nectar, while changes in sugar and amino acid composition can impact their longevity. Future research should focus on understanding the effects of nectar microbial colonization on parasitoid reproduction, with a specific emphasis on the interactions among different microbial taxa known to co-occur in floral nectar. Overall, this review highlights the importance of considering the role of nectar-inhabiting microbes in shaping the interactions between parasitoids and their food resources.


Assuntos
Flores , Néctar de Plantas , Animais , Néctar de Plantas/metabolismo , Flores/microbiologia , Insetos/metabolismo , Leveduras , Reprodução
15.
Curr Opin Insect Sci ; 55: 101001, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494029

RESUMO

Competition for hosts is a common ecological interaction in insect parasitoids. In the recent years, it has become increasingly evident that microorganisms can act as 'hidden players' in parasitoid ecology. In this review, we propose that parasitoid competition should take into consideration the microbial influence. In particular, we take a tritrophic perspective and discuss how parasitoid competition can be modulated by microorganisms associated with the parasitoids, their herbivore hosts, or the plants attacked by the herbivores. Although research is still in its infancy, recent studies have shown that microbial symbionts can modulate the contest outcome. The emerging pattern is that microorganisms not only affect the competitive traits of parasitoids but also the fighting arena (i.e. the herbivore host and its food plant), in which competition takes place. We have also identified important gaps in the literature that should be addressed in future studies to advance our understanding about parasitoid competition.


Assuntos
Interações Hospedeiro-Parasita , Insetos , Animais , Herbivoria , Plantas , Fenótipo
16.
Curr Opin Insect Sci ; 55: 101002, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535578

RESUMO

Egg parasitoids of herbivorous insects use an interplay of short- and long-range chemical cues emitted by hosts and host plants to find eggs to parasitize. Volatile compounds that attract egg parasitoids can be identified via behavioral assays and used to manipulate parasitoid behavior in the field for biological control of herbivorous pests. However, how and when a particular cue will be used varies over the life of an individual, as well as at and below species level. Future research should expand taxonomic coverage to explore variation in chemical cue use in more natural, dynamic settings. More nuanced understanding of the variability of egg parasitoid host-finding strategies will aid in disentangling the underlying genetics and further enhancing biological control.


Assuntos
Sinais (Psicologia) , Insetos , Animais , Herbivoria , Oviposição
17.
Curr Opin Insect Sci ; 49: 56-62, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839032

RESUMO

Insect herbivores interact via plant-mediated interactions in which one herbivore species induces changes in plant quality that affects the performance of a second phytophagous insect that shares the food plant. These interactions are often asymmetric due to specificity in induced plant responses to herbivore attack, amount of plant damage, elicitors in herbivore saliva and plant organ damaged by herbivores. Parasitoids and their symbiotic polydnaviruses alter herbivore physiology and behaviour and may influence how plants respond to parasitized herbivores. We argue that these phenomena affect plant-mediated interactions between herbivores. We identify that the extended phenotype of parasitoid polydnaviruses is an important knowledge gap in interaction networks of insect communities.


Assuntos
Herbivoria , Vespas , Animais , Interações Hospedeiro-Parasita , Insetos , Larva/fisiologia , Plantas , Vespas/fisiologia
18.
Pest Manag Sci ; 78(8): 3376-3383, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35513347

RESUMO

BACKGROUND: Interspecific competition in insect parasitoids is an important ecological phenomenon that has relevant implications for biological pest control. To date, interspecific intrinsic (=larval) competition has been intensively studied, while investigations on extrinsic (=adult) competition have often lagged behind. In this study we examined the role played by parasitoid reproductive traits and host clutch size on the outcome of extrinsic competition between Trissolcus basalis (Wollaston) and Ooencyrtus telenomicida (Vassiliev), two egg parasitoids of the pest Nezara viridula (L). Laboratory experiments were conducted by allowing both parasitoid species to exploit an egg mass made of 10, 20, 30, or 40 hosts through single or simultaneous releases. Furthermore, under field conditions, egg masses consisting of 10 or 40 hosts were exposed in a tomato crop in order to validate laboratory investigation. RESULTS: The results show that the egg mass size is an important predictor of extrinsic competition in our study system as a higher proportion of T. basalis emerged from large egg masses, while O. telenomicida dominated in small egg masses. Analysis of reproductive traits of parasitoid species indicates that T. basalis has superior abilities in host exploitation compared with O. telenomicida. CONCLUSIONS: We found that contrasting reproductive traits of two competing egg parasitoid species facilitate coexistence on a shared stink bug host. This work also highlights the importance to consider extrinsic competitive interactions between parasitoid species in a biological control perspective. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Heterópteros , Controle Biológico de Vetores , Vespas , Animais , Heterópteros/parasitologia , Interações Hospedeiro-Parasita , Óvulo/parasitologia , Fenótipo
19.
Microbiologyopen ; 11(6): e1337, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36479626

RESUMO

Although microbial communities of insects from larval to adult stage have been increasingly investigated in recent years, little is still known about the diversity and composition of egg-associated microbiomes. In this study, we used high-throughput amplicon sequencing and quantitative PCR to get a better understanding of the microbiome of insect eggs and how they are established using the Southern green stinkbug Nezara viridula (L.) (Hemiptera: Pentatomidae) as a study object. First, to determine the bacterial community composition, egg masses from two natural populations in Belgium and Italy were examined. Subsequently, microbial community establishment was assessed by studying stinkbug eggs of different ages obtained from laboratory strains (unlaid eggs collected from the ovaries, eggs less than 24 h old, and eggs collected 4 days after oviposition). Both the external and internal egg-associated microbiomes were analyzed by investigating egg washes and surface-sterilized washed eggs, respectively. Eggs from the ovaries were completely devoid of bacteria, indicating that egg-associated bacteria were deposited on the eggs during or after oviposition. The bacterial diversity of deposited eggs was very low, with on average 6.1 zero-radius operational taxonomic units (zOTUs) in the external microbiome and 1.2 zOTUs in internal samples of egg masses collected from the field. Bacterial community composition and density did not change significantly over time, suggesting limited bacterial growth. A Pantoea-like symbiont previously found in the midgut of N. viridula was found in every sample and generally occurred at high relative and absolute densities, especially in the internal egg samples. Additionally, some eggs harbored a Sodalis symbiont, which has previously been found in the abdomen of several insects, but so far not in N. viridula populations. We conclude that the egg-associated bacterial microbiome of N. viridula is species-poor and dominated by a few symbionts, particularly the species-specific obligate Pantoea-like symbiont.


Assuntos
Hemípteros , Microbiota , Animais , Bélgica , Itália
20.
J Chem Ecol ; 37(6): 629-39, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21552995

RESUMO

Contact kairomones from the host mud dauber wasp Trypoxylon politum Say (Hymenoptera: Crabronidae) that mediate behavioral responses of its ectoparasitoid Melittobia digitata Dahms (Hymenoptera: Eulophidae) were investigated. Chemical residues from host by-products, the cocoon, and the meconium, induced arrestment behavior of macropterous female parasitoids, while those from the host stage attacked, i.e., the prepupa, did not. Melittobia digitata response to polar and apolar extracts of host by-products indicated kairomone(s) solubility mainly in hexane. GC and GC/MS analysis of cocoon and meconium apolar extracts revealed a mixture of linear carboxylic acids from C(6) to C(18), and both extracts contained almost identical compounds. When a reconstructed blend of host by-product carboxylic acids was tested, M. digitata females showed only a weak response, thus suggesting that other unidentified compounds present in small quantities also may be involved. Melittobia digitata's response to contact kairomones was innate and not affected by previous host exposure experience. Our results provide evidence of contact kairomone exploitation in the genus Melittobia. The ecological significance of these findings in the host selection process of M. digitata is discussed.


Assuntos
Oviposição , Feromônios/farmacologia , Vespas/efeitos dos fármacos , Animais , Sinais (Psicologia) , Feminino , Interações Hospedeiro-Parasita/efeitos dos fármacos , Instinto , Feromônios/química , Texas , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA