Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet C Semin Med Genet ; 184(4): 1060-1077, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33325159

RESUMO

We carried out an exhaustive review regarding human skin color variation and how much it may be related to vitamin D metabolism and other photosensitive molecules. We discuss evolutionary contexts that modulate this variability and hypotheses postulated to explain them; for example, a small amount of melanin in the skin facilitates vitamin D production, making it advantageous to have fair skin in an environment with little radiation incidence. In contrast, more melanin protects folate from degradation in an environment with a high incidence of radiation. Some Native American populations have a skin color at odds with what would be expected for the amount of radiation in the environment in which they live, a finding challenging the so-called "vitamin D-folate hypothesis." Since food is also a source of vitamin D, dietary habits should also be considered. Here we argue that a gene network approach provides tools to explain this phenomenon since it indicates potential alleles co-evolving in a compensatory way. We identified alleles of the vitamin D metabolism and pigmentation pathways segregated together, but in different proportions, in agriculturalists and hunter-gatherers. Finally, we highlight how an evolutionary approach can be useful to understand current topics of medical interest.


Assuntos
Pigmentação da Pele , Vitamina D , Adaptação Fisiológica/genética , Evolução Biológica , Humanos , Pele , Pigmentação da Pele/genética , Indígena Americano ou Nativo do Alasca
2.
J Evol Biol ; 31(8): 1180-1192, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29943391

RESUMO

Traits that undergo massive natural selection pressure, with multiple events of positive selection, are hard to find. Social behaviour, in social animals, is crucial for survival, and genetic networks involved in behaviour, such as those of serotonin (5-HT) and other neurotransmitters, must be the target of natural selection. Here, we used molecular analyses to search for signals of positive selection in the 5-HT system and found such signals in the M3-M4 intracellular domain of the 5-HT3A serotonin receptor subunit (HTR3A) in primates. We detected four amino acid sites with signs of putatively positive selection (398, 403, 432 and 416); the first three showed indications of being selected in New World monkeys (NWM, Platyrrhini), specifically in the Callitrichinae branch. Additionally, we searched for associations of these amino acid variants with social behavioural traits (i.e. sex-biased dispersal, dominance and social monogamy) using classical and Bayesian methods, and found statistically significant associations for unbiased sex dispersal (398L and 416S), unbiased sex dominance (416S) and social monogamy (416S), as well as significant positive correlation between female dispersal and 403G. Furthermore, we found putatively functional protein motifs determined by three selected sites, of which we highlight a ligand motif to GSK3 in the 416S variant, appearing only in Platyrrhini. 5-HT, 5-HT3A receptor and GSK3 are part of a network that participates in neurodevelopment and regulates behaviour, among other functions. We suggest that these genetic variations, together with those found in other neurotransmitter systems, must contribute to adaptive behaviours and consequently to fitness in NWMs.


Assuntos
Comportamento Animal/fisiologia , Platirrinos/genética , Platirrinos/fisiologia , Seleção Genética , Serotonina/metabolismo , Animais , Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Filogenia , Serotonina/genética
3.
Stat Med ; 37(2): 195-206, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28098392

RESUMO

Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Influenza Humana/virologia , Modelos Genéticos , Modelos Imunológicos , Teorema de Bayes , Bioestatística , Análise por Conglomerados , Evolução Molecular , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/epidemiologia , Funções Verossimilhança , Epidemiologia Molecular , Filogenia , Estatísticas não Paramétricas , Processos Estocásticos
4.
BMC Evol Biol ; 15: 92, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25989835

RESUMO

BACKGROUND: Quaternary climatic changes led to variations in sea level and these variations played a significant role in the generation of marine terrace deposits in the South Atlantic Coastal Plain. The main consequence of the increase in sea level was local extinction or population displacement, such that coastal species would be found around the new coastline. Our main goal was to investigate the effects of sea level changes on the geographical structure and variability of genetic lineages from a Petunia species endemic to the South Atlantic Coastal Plain. We employed a phylogeographic approach based on plastid sequences obtained from individuals collected from the complete geographic distribution of Petunia integrifolia ssp. depauperata and its sister group. We used population genetics tests to evaluate the degree of genetic variation and structure among and within populations, and we used haplotype network analysis and Bayesian phylogenetic methods to estimate divergence times and population growth. RESULTS: We observed three major genetic lineages whose geographical distribution may be related to different transgression/regression events that occurred in this region during the Pleistocene. The divergence time between the monophyletic group P. integrifolia ssp. depauperata and its sister group (P. integrifolia ssp. integrifolia) was compatible with geological estimates of the availability of the coastal plain. Similarly, the origin of each genetic lineage is congruent with geological estimates of habitat availability. CONCLUSIONS: Diversification of P. integrifolia ssp. depauperata possibly occurred as a consequence of the marine transgression/regression cycles during the Pleistocene. In periods of high sea level, plants were most likely restricted to a refuge area corresponding to fossil dunes and granitic hills, from which they colonized the coast once the sea level came down. The modern pattern of lineage geographical distribution and population variation was established by a range expansion with serial founder effects conditioned on soil availability.


Assuntos
Petunia/classificação , Petunia/genética , Oceano Atlântico , Teorema de Bayes , Mudança Climática , Ecossistema , Variação Genética , Genética Populacional , Geografia , Dados de Sequência Molecular , Filogenia , Filogeografia
5.
Ann Appl Stat ; 9(2): 969-991, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27053974

RESUMO

Understanding which phenotypic traits are consistently correlated throughout evolution is a highly pertinent problem in modern evolutionary biology. Here, we propose a multivariate phylogenetic latent liability model for assessing the correlation between multiple types of data, while simultaneously controlling for their unknown shared evolutionary history informed through molecular sequences. The latent formulation enables us to consider in a single model combinations of continuous traits, discrete binary traits, and discrete traits with multiple ordered and unordered states. Previous approaches have entertained a single data type generally along a fixed history, precluding estimation of correlation between traits and ignoring uncertainty in the history. We implement our model in a Bayesian phylogenetic framework, and discuss inference techniques for hypothesis testing. Finally, we showcase the method through applications to columbine flower morphology, antibiotic resistance in Salmonella, and epitope evolution in influenza.

6.
Philos Trans R Soc Lond B Biol Sci ; 368(1614): 20120206, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382428

RESUMO

Bayesian phylogeographic methods simultaneously integrate geographical and evolutionary modelling, and have demonstrated value in assessing spatial spread patterns of measurably evolving organisms. We improve on existing phylogeographic methods by combining information from multiple phylogeographic datasets in a hierarchical setting. Consider N exchangeable datasets or strata consisting of viral sequences and locations, each evolving along its own phylogenetic tree and according to a conditionally independent geographical process. At the hierarchical level, a random graph summarizes the overall dispersion process by informing which migration rates between sampling locations are likely to be relevant in the strata. This approach provides an efficient and improved framework for analysing inherently hierarchical datasets. We first examine the evolutionary history of multiple serotypes of dengue virus in the Americas to showcase our method. Additionally, we explore an application to intrahost HIV evolution across multiple patients.


Assuntos
Vírus da Dengue/genética , HIV-1/genética , Modelos Genéticos , Filogenia , Filogeografia/métodos , América , Teorema de Bayes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA