Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 707: 108909, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015323

RESUMO

Rapid myocardial relaxation is essential in maintaining cardiac output, and impaired relaxation is an early indicator of diastolic dysfunction. While the biochemical modifiers of relaxation are well known to include calcium handling, thin filament activation, and myosin kinetics, biophysical and biomechanical modifiers can also alter relaxation. We have previously shown that the relaxation rate is increased by an increasing strain rate, not a reduction in afterload. The slope of the relaxation rate to strain rate relationship defines Mechanical Control of Relaxation (MCR). To investigate MCR further, we performed in vitro experiments and computational modeling of preload-adjustment using intact rat cardiac trabeculae. Trabeculae studies are often performed using isometric (fixed-end) muscles at optimal length (Lo, length producing maximal developed force). We determined that reducing muscle length from Lo increased MCR by 20%, meaning that reducing preload could substantially increase the sensitivity of the relaxation rate to the strain rate. We subsequently used computational modeling to predict mechanisms that might underlie this preload-dependence. Computational modeling was not able to fully replicate experimental data, but suggested that thin-filament properties are not sufficient to explain preload-dependence of MCR because the model required the thin-filament to become more activated at reduced preloads. The models suggested that myosin kinetics may underlie the increase in MCR at reduced preload, an effect that can be enhanced by force-dependence. Relaxation can be modified and enhanced by reduced preload. Computational modeling implicates myosin-based targets for treatment of diastolic dysfunction, but further model refinements are needed to fully replicate experimental data.


Assuntos
Modelos Biológicos , Miosinas/metabolismo , Estresse Mecânico , Fenômenos Biomecânicos , Cinética , Músculos/metabolismo , Músculos/fisiologia , Suporte de Carga
2.
Physiol Rep ; 8(4): e14382, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109347

RESUMO

Intact cardiomyocytes are used to investigate cardiac contractility and evaluate the efficacy of new therapeutic compounds. Primary enzymatic isolation of adult rodent cardiomyocytes has limitations, including low cardiomyocyte survival, which is likely due to ischemic conditions and/or membrane damage. The addition of Poloxamer 188 (P188) has been used to reduce ischemia- and membrane-related damage in ischemia-reperfusion and muscular dystrophy studies. P188 stabilizes membranes, reducing cell death. Cardiomyocytes were isolated from rats, under three conditions: (1) using standard isolation solutions, (2) with P188 added during cannulation (ischemic event), and (3) with P188 added during cannulation, enzymatic digestion, and trituration. Cell survival was assessed by quantifying the number of rod-shaped versus contracted cells on the day of isolation and up to 3 days post-isolation. Adding P188 only during cannulation yielded improved survival on the day of isolation. Little difference in survival was seen among the three conditions in the days post-isolation. Cardiomyocyte function was assessed by measuring calcium transients and unloaded sarcomere lengths for up to 2 days post-isolation. P188 did not consistently alter calcium handling or sarcomere shortening in the isolated cardiomyocytes. We conclude that the addition of P188 to the cannulation (e.g., wash) of the isolated heart may improve initial survival of cardiomyocytes upon primary enzymatic isolation.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Poloxâmero/farmacologia , Cultura Primária de Células/métodos , Tensoativos/farmacologia , Animais , Sinalização do Cálcio , Células Cultivadas , Contração Miocárdica , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA