Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(21): 11862-11871, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27775322

RESUMO

Ozone, a strong oxidant and disinfectant, seems ideal to cope with future challenges of water treatment, such as micropollutants, multiresistant bacteria (MRB) and even intracellular antibiotic resistance genes (ARG), but information on the latter is scarce. In ozonation experiments we simultaneously determined kinetics and dose-dependent inactivation of Escherichia coli and its plasmid-encoded sulfonamide resistance gene sul1 in different water matrixes. Effects in E. coli were compared to an autochthonous wastewater community. Furthermore, resistance elimination by ozonation and post-treatment were studied in full-scale at a wastewater treatment plant (WWTP). Bacterial inactivation (cultivability, membrane damage) and degradation of sul1 were investigated using plate counts, flow cytometry and quantitative real-time PCR. In experiments with E. coli and the more ozone tolerant wastewater community disruption of intracellular genes was observed at specific ozone doses feasible for full-scale application, but flocs seemed to interfere with this effect. At the WWTP, regrowth during postozonation treatment partly compensated inactivation of MRB, and intracellular sul1 seemed unaffected by ozonation. Our findings indicate that ozone doses relevant for micropollutant abatement from wastewater do not eliminate intracellular ARG.


Assuntos
Ozônio , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Eliminação de Resíduos Líquidos , Purificação da Água
2.
Appl Microbiol Biotechnol ; 98(1): 373-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24158734

RESUMO

The compound p-tert-amylphenol (p-(1,1-dimethylpropyl)phenol) is a widely used disinfectant belonging to the group of short branched-chain alkylphenols. It is produced in or imported into the USA with more than one million pounds per year and can be found in the environment in surface water, sediments, and soil. We have investigated for the first time the biotransformation of this disinfectant and the accumulation of metabolites by five bacterial strains, three yeast strains, and three filamentous fungi, selected because of their ability to transform either aromatic or branched-chain compounds. Of the 11 microorganisms tested, one yeast strain and three bacteria could not transform the disinfectant despite of a very low concentration applied (0.005%). None of the other seven organisms was able to degrade the short branched alkyl chain of p-tert-amylphenol. However, two yeast strains, two filamentous fungi, and two bacterial strains attacked the aromatic ring system of the disinfectant via the hydroxylated intermediate 4-(1,1-dimethyl-propyl)-benzene-1,2-diol resulting in two hitherto unknown ring fission products with pyran and furan structures, 4-(1,1-dimethyl-propyl)-6-oxo-6-H-pyran-2-carboxylic acid and 2-[3-(1,1-dimethyl-propyl)-5-oxo-2H-furan-2-yl]acetic acid. While the disinfectant was toxic to the organisms applied, one of the ring cleavage products was not. Thus, a detoxification of the disinfectant was achieved by ring cleavage. Furthermore, one filamentous fungus formed sugar conjugates with p-tert-amylphenol as another mechanism of detoxification of toxic environmental pollutants. With this work, we can also contribute to the allocation of unknown chemical compounds within environmental samples to their parent compounds.


Assuntos
Bactérias/metabolismo , Desinfetantes/metabolismo , Fungos/metabolismo , Fenóis/metabolismo , Biotransformação , Inativação Metabólica
3.
Water Res ; 101: 617-627, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27322566

RESUMO

Inactivation kinetics of autochthonous bacteria during ozonation of wastewater effluents were investigated using cultivation-independent flow cytometry (FCM) with total cell count (TCC) and intact cell count (ICC) and intracellular adenosine triphosphate (ATP) analysis. The principles of the methods including ozone inactivation kinetics were demonstrated with laboratory-cultured Escherichia coli spiked into filtered and sterilized wastewater effluent. Both intracellular ATP and ICC decreased with increasing ozone doses, with ICC being the more conservative parameter. The log-inactivation levels (-log(N/N0) of E. coli reached the method detection limits for FCM (∼3) and ATP (∼1.7) at specific ozone doses of ≥0.5 gO3/gDOC. During ozonation of four real wastewater effluents, the log-inactivation of autochthonous bacteria with FCM ICC was 0.3-1.0 for 0.25 gO3/gDOC and increased to 1.1-2.1 for 0.5 gO3/gDOC, but remained at a similar level of 1.5-2.8 for a further increase of the specific ozone doses to 1.0 and 1.5 gO3/gDOC. The FCM data also showed that autochthonous bacteria were composed of communities with high and low ozone reactivity. The inactivation levels measured with intracellular ATP were reasonably correlated to ICC (r(2) = 0.8). Overall, FCM and ATP measurements were demonstrated to be useful tools to monitor the inactivation of autochthonous bacteria during ozonation of municipal wastewater effluents.


Assuntos
Escherichia coli , Águas Residuárias , Adenosina , Trifosfato de Adenosina , Bactérias , Citometria de Fluxo , Ozônio , Fosfatos , Eliminação de Resíduos Líquidos
4.
Environ Int ; 81: 45-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25913323

RESUMO

Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water.


Assuntos
Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Atividades Humanas , Dosagem de Genes , Lagos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Suíça , Águas Residuárias
5.
ISME J ; 8(7): 1381-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24599073

RESUMO

Antibiotic-resistance genes (ARGs) are currently discussed as emerging environmental contaminants. Hospital and municipal sewage are important sources of ARGs for the receiving freshwater bodies. We investigated the spatial distribution of different ARGs (sul1, sul2, tet(B), tet(M), tet(W) and qnrA) in freshwater lake sediments in the vicinity of a point source of treated wastewater. ARG contamination of Vidy Bay, Lake Geneva, Switzerland was quantified using real-time PCR and compared with total mercury (THg), a frequently particle-bound inorganic contaminant with known natural background levels. Two-dimensional mapping of the investigated contaminants in lake sediments with geostatistical tools revealed total and relative abundance of ARGs in close proximity of the sewage discharge point were up to 200-fold above levels measured at a remote reference site (center of the lake) and decreased exponentially with distance. Similar trends were observed in the spatial distribution of different ARGs, whereas distributions of ARGs and THg were only moderately correlated, indicating differences in the transport and fate of these pollutants or additional sources of ARG contamination. The spatial pattern of ARG contamination and supporting data suggest that deposition of particle-associated wastewater bacteria rather than co-selection by, for example, heavy metals was the main cause of sediment ARG contamination.


Assuntos
Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Águas Residuárias/microbiologia , Mercúrio/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Suíça , Poluentes Químicos da Água/isolamento & purificação
6.
Front Microbiol ; 3: 106, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22461783

RESUMO

At present, very little is known about the fate and persistence of multiresistant bacteria (MRB) and their resistance genes in natural aquatic environments. Treated, but partly also untreated sewage of the city of Lausanne, Switzerland is discharged into Vidy Bay (Lake Geneva) resulting in high levels of contamination in this part of the lake. In the present work we have studied the prevalence of MRB and resistance genes in the wastewater stream of Lausanne. Samples from hospital and municipal raw sewage, treated effluent from Lausanne's wastewater treatment plant (WTP) as well as lake water and sediment samples obtained close to the WTP outlet pipe and a remote site close to a drinking water pump were evaluated for the prevalence of MRB. Selected isolates were identified (16S rRNA gene fragment sequencing) and characterized with regards to further resistances, resistance genes, and plasmids. Mostly, studies investigating this issue have relied on cultivation-based approaches. However, the limitations of these tools are well known, in particular for environmental microbial communities, and cultivation-independent molecular tools should be applied in parallel in order to take non-culturable organisms into account. Here we directly quantified the sulfonamide resistance genes sul1 and sul2 from environmental DNA extracts using TaqMan real-time quantitative PCR. Hospital sewage contained the highest load of MRB and antibiotic resistance genes (ARGs). Wastewater treatment reduced the total bacterial load up to 78% but evidence for selection of extremely multiresistant strains and accumulation of resistance genes was observed. Our data clearly indicated pollution of sediments with ARGs in the vicinity of the WTP outlet. The potential of lakes as reservoirs of MRB and potential risks are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA