Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Water Health ; 21(9): 1264-1276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37756194

RESUMO

Recent MPOX viral resurgences have mobilized public health agencies around the world. Recognizing the significant risk of MPOX outbreaks, large-scale human testing, and immunization campaigns have been initiated by local, national, and global public health authorities. Recently, traditional clinical surveillance campaigns for MPOX have been complemented with wastewater surveillance (WWS), building on the effectiveness of existing wastewater programs that were built to monitor SARS-CoV-2 and recently expanded to include influenza and respiratory syncytial virus surveillance in wastewaters. In the present study, we demonstrate and further support the finding that MPOX viral fragments agglomerate in the wastewater solids fraction. Furthermore, this study demonstrates that the current, most commonly used MPOX assays are equally effective at detecting low titers of MPOX viral signal in wastewaters. Finally, MPOX WWS is shown to be more effective at passively tracking outbreaks and/or resurgences of the disease than clinical testing alone in smaller communities with low human clinical case counts of MPOX.

2.
J Environ Sci (China) ; 107: 218-229, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34412784

RESUMO

Detection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories. Concentration estimates reported by individual laboratories were consistently within a 1.0-log10 range for aliquots of the same spiked condition. All laboratories distinguished between low- and high-spikes for both surrogates. As expected, greater variability was observed in the results amongst laboratories than within individual laboratories, but SARS-CoV-2 RNA concentration estimates for each spiked condition remained mostly within 1.0-log10 ranges. The no-spike wastewater aliquots provided yielded non-detects or trace levels (<20 gene copies/mL) of SARS-CoV-2 RNA. Detections appear linked to methods that included or focused on the solids fraction of the wastewater matrix and might represent in-situ SARS-CoV-2 to the wastewater sample. HCoV-229E RNA was not detected in the no-spike aliquots. Overall, all methods yielded comparable results at the conditions tested. Partitioning behavior of SARS-CoV-2 and spiked surrogates in wastewater should be considered to evaluate method effectiveness. A consistent method and laboratory to explore wastewater SARS-CoV-2 temporal trends for a given system, with appropriate quality control protocols and documented in adequate detail should succeed.


Assuntos
COVID-19 , RNA Viral , Humanos , Laboratórios , Pandemias , SARS-CoV-2 , Águas Residuárias
3.
Environ Sci Pollut Res Int ; 31(4): 5242-5253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112868

RESUMO

Wastewater surveillance (WWS) of SARS-CoV-2 has become a crucial tool for monitoring COVID-19 cases and outbreaks. Previous studies have indicated that SARS-CoV-2 RNA measurement from testing solid-rich primary sludge yields better sensitivity compared to testing wastewater influent. Furthermore, measurement of pepper mild mottle virus (PMMoV) signal in wastewater allows for precise normalization of SARS-CoV-2 viral signal based on solid content, enhancing disease prevalence tracking. However, despite the widespread adoption of WWS, a knowledge gap remains regarding the impact of ferric sulfate coagulation, commonly used in enhanced primary clarification, the initial stage of wastewater treatment where solids are sedimented and removed, on SARS-CoV-2 and PMMoV quantification in wastewater-based epidemiology. This study examines the effects of ferric sulfate addition, along with the associated pH reduction, on the measurement of SARS-CoV-2 and PMMoV viral measurements in wastewater primary clarified sludge through jar testing. Results show that the addition of Fe3+ concentrations in the conventional 0 to 60 mg/L range caused no effect on SARS-CoV-2 N1 and N2 gene region measurements in wastewater solids. However, elevated Fe3+ concentrations were shown to be associated with a statistically significant increase in PMMoV viral measurements in wastewater solids, which consequently resulted in the underestimation of PMMoV-normalized SARS-CoV-2 viral signal measurements (N1 and N2 copies/copies of PMMoV). The observed pH reduction from coagulant addition did not contribute to the increased PMMoV measurements, suggesting that this phenomenon arises from the partitioning of PMMoV viral particles into wastewater solids.


Assuntos
COVID-19 , Compostos Férricos , Tobamovirus , Águas Residuárias , Humanos , SARS-CoV-2 , Esgotos , RNA Viral , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
Sci Data ; 11(1): 656, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906875

RESUMO

During the COVID-19 pandemic, the Province of Ontario, Canada, launched a wastewater surveillance program to monitor SARS-CoV-2, inspired by the early work and successful forecasts of COVID-19 waves in the city of Ottawa, Ontario. This manuscript presents a dataset from January 1, 2021, to March 31, 2023, with RT-qPCR results for SARS-CoV-2 genes and PMMoV from 107 sites across all 34 public health units in Ontario, covering 72% of the province's and 26.2% of Canada's population. Sampling occurred 2-7 times weekly, including geographical coordinates, serviced populations, physico-chemical water characteristics, and flowrates. In doing so, this manuscript ensures data availability and metadata preservation to support future research and epidemic preparedness through detailed analyses and modeling. The dataset has been crucial for public health in tracking disease locally, especially with the rise of the Omicron variant and the decline in clinical testing, highlighting wastewater-based surveillance's role in estimating disease incidence in Ontario.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Ontário/epidemiologia , COVID-19/epidemiologia , Águas Residuárias/virologia , Humanos , Pandemias , Carga Viral
6.
Front Microbiol ; 14: 1048661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937263

RESUMO

The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard" data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.

7.
Curr Opin Environ Sci Health ; 33: 100458, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37034453

RESUMO

Wastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models. Further specific research is essential in the monitoring of other viral pathogens with pandemic potential and subcatchment applications to maximize the benefits of WBE beyond COVID-19.

8.
Front Public Health ; 11: 1261165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829087

RESUMO

Introduction: Detection of community respiratory syncytial virus (RSV) infections informs the timing of immunoprophylaxis programs and hospital preparedness for surging pediatric volumes. In many jurisdictions, this relies upon RSV clinical test positivity and hospitalization (RSVH) trends, which are lagging indicators. Wastewater-based surveillance (WBS) may be a novel strategy to accurately identify the start of the RSV season and guide immunoprophylaxis administration and hospital preparedness. Methods: We compared citywide wastewater samples and pediatric RSVH in Ottawa and Hamilton between August 1, 2022, and March 5, 2023. 24-h composite wastewater samples were collected daily and 5 days a week at the wastewater treatment facilities in Ottawa and Hamilton, Ontario, Canada, respectively. RSV WBS samples were analyzed in real-time for RSV by RT-qPCR. Results: RSV WBS measurements in both Ottawa and Hamilton showed a lead time of 12 days when comparing the WBS data set to pediatric RSVH data set (Spearman's ρ = 0.90). WBS identify early RSV community transmission and declared the start of the RSV season 36 and 12 days in advance of the provincial RSV season start (October 31) for the city of Ottawa and Hamilton, respectively. The differing RSV start dates in the two cities is likely associated with geographical and regional variation in the incidence of RSV between the cities. Discussion: Quantifying RSV in municipal wastewater forecasted a 12-day lead time of the pediatric RSVH surge and an earlier season start date compared to the provincial start date. These findings suggest an important role for RSV WBS to inform regional health system preparedness, reduce RSV burden, and understand variations in community-related illness as novel RSV vaccines and monoclonal antibodies become available.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Criança , Palivizumab/uso terapêutico , Antivirais/uso terapêutico , Ontário/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Estações do Ano , Cidades , Águas Residuárias , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico
9.
Curr Opin Environ Sci Health ; 27: 100348, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35399703

RESUMO

Amid the 2019 coronavirus disease pandemic (COVID-19), the scientific community has a responsibility to provide accessible public health resources within their communities. Wastewater based epidemiology (WBE) has been used to monitor community spread of the pandemic. The goal of this review was to evaluate the need for an environmental justice approach for COVID-19 WBE starting with the state of California in the United States. Methods included a review of the peer-reviewed literature, government-provided data, and news stories. As of June 2021, there were twelve universities, nine public dashboards, and 48 of 384 wastewater treatment plants monitoring wastewater for SARS-CoV-2 within California. The majority of wastewater monitoring in California has been conducted in the urban areas of Coastal and Southern California (34/48), with a lack of monitoring in more rural areas of Central (10/48) and Northern California (4/48). Similar to the access to COVID-19 clinical testing and vaccinations, there is a disparity in access to wastewater testing which can often provide an early warning system to outbreaks. This research demonstrates the need for an environmental justice approach and equity considerations when determining locations for environmental monitoring.

10.
Sci Total Environ ; 853: 158458, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36075428

RESUMO

Wastewater surveillance (WWS) of SARS-CoV-2 was proven to be a reliable and complementary tool for population-wide monitoring of COVID-19 disease incidence but was not as rigorously explored as an indicator for disease burden throughout the pandemic. Prior to global mass immunization campaigns and during the spread of the wildtype COVID-19 and the Alpha variant of concern (VOC), viral measurement of SARS-CoV-2 in wastewater was a leading indicator for both COVID-19 incidence and disease burden in communities. As the two-dose vaccination rates escalated during the spread of the Delta VOC in Jul. 2021 through Dec. 2021, relations weakened between wastewater signal and community COVID-19 disease incidence and maintained a strong relationship with clinical metrics indicative of disease burden (new hospital admissions, ICU admissions, and deaths). Further, with the onset of the vaccine-resistant Omicron BA.1 VOC in Dec. 2021 through Mar. 2022, wastewater again became a strong indicator of both disease incidence and burden during a period of limited natural immunization (no recent infection), vaccine escape, and waned vaccine effectiveness. Lastly, with the populations regaining enhanced natural and vaccination immunization shortly prior to the onset of the Omicron BA.2 VOC in mid-Mar 2022, wastewater is shown to be a strong indicator for both disease incidence and burden. Hospitalization-to-wastewater ratio is further shown to be a good indicator of VOC virulence when widespread clinical testing is limited. In the future, WWS is expected to show moderate indication of incidence and strong indication of disease burden in the community during future potential seasonal vaccination campaigns.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Pandemias , SARS-CoV-2 , Águas Residuárias , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias
11.
Sci Rep ; 12(1): 15777, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138059

RESUMO

Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Surtos de Doenças , Humanos , Influenza Humana/epidemiologia , Pandemias , Esgotos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
12.
Sci Total Environ ; 853: 158547, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067855

RESUMO

Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
13.
Sci Total Environ ; 801: 149618, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34418622

RESUMO

Wastewater-based epidemiology/wastewater surveillance has been a topic of significant interest over the last year due to its application in SARS-CoV-2 surveillance to track prevalence of COVID-19 in communities. Although SARS-CoV-2 surveillance has been applied in more than 50 countries to date, the application of this surveillance has been largely focused on relatively affluent urban and peri-urban communities. As such, there is a knowledge gap regarding the implementation of reliable wastewater surveillance in small and rural communities for the purpose of tracking rates of incidence of COVID-19 and other pathogens or biomarkers. This study examines the relationships existing between SARS-CoV-2 viral signal from wastewater samples harvested from an upstream pumping station and from an access port at a downstream wastewater treatment lagoon with the community's COVID-19 rate of incidence (measured as percent test positivity) in a small, rural community in Canada. Real-time quantitative polymerase chain reaction (RT-qPCR) targeting the N1 and N2 genes of SARS-CoV-2 demonstrate that all 24-h composite samples harvested from the pumping station over a period of 5.5 weeks had strong viral signal, while all samples 24-h composite samples harvested from the lagoon over the same period were below the limit of quantification. RNA concentrations and integrity of samples harvested from the lagoon were both lower and more variable than from samples from the upstream pumping station collected on the same date, indicating a higher overall stability of SARS-CoV-2 RNA upstream of the lagoon. Additionally, measurements of PMMoV signal in wastewater allowed normalizing SARS-CoV-2 viral signal for fecal matter content, permitting the detection of actual changes in community prevalence with a high level of granularity. As a result, in sewered small and rural communities or low-income regions operating wastewater lagoons, samples for wastewater surveillance should be harvested from pumping stations or the sewershed as opposed to lagoons.


Assuntos
COVID-19 , Humanos , RNA Viral , População Rural , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
14.
Sci Total Environ ; 770: 145319, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33508669

RESUMO

Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.


Assuntos
COVID-19 , Cidades , Hospitalização , Humanos , RNA Viral , Estudos Retrospectivos , SARS-CoV-2 , Águas Residuárias
15.
Water Res ; 205: 117681, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619611

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed millions of lives to date. Antigenic drift has resulted in viral variants with putatively greater transmissibility, virulence, or both. Early and near real-time detection of these variants of concern (VOC) and the ability to accurately follow their incidence and prevalence in communities is wanting. Wastewater-based epidemiology (WBE), which uses nucleic acid amplification tests to detect viral fragments, is a reliable proxy of COVID-19 incidence and prevalence, and thus offers the potential to monitor VOC viral load in a given population. Here, we describe and validate a primer extension PCR strategy targeting a signature mutation in the N gene of SARS-CoV-2. This allows quantification of B.1.1.7 versus non-B.1.1.7 allele frequency in wastewater without the need to employ quantitative RT-PCR standard curves. We show that the wastewater B.1.1.7 profile correlates with its clinical counterpart and benefits from a near real-time and facile data collection and reporting pipeline. This assay can be quickly implemented within a current SARS-CoV-2 WBE framework with minimal cost; allowing early and contemporaneous estimates of B.1.1.7 community transmission prior to, or in lieu of, clinical screening and identification. Our study demonstrates that this strategy can provide public health units with an additional and much needed tool to rapidly triangulate VOC incidence/prevalence with high sensitivity and lineage specificity.


Assuntos
COVID-19 , SARS-CoV-2 , Alelos , Humanos , Reação em Cadeia da Polimerase , Carga Viral , Águas Residuárias
16.
Water Res ; 188: 116560, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137526

RESUMO

In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections through measuring trends of RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 gene regions are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canada's national capital region, i.e., the City of Ottawa, ON (pop. ≈ 1.1M) and the City of Gatineau, QC (pop. ≈ 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 gene regions in PCS (92.7, 90.6%, n = 6) as compared to PGS samples (79.2, 82.3%, n = 5). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMoV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human 18S rRNA, making PMMoV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMoV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMoV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.


Assuntos
Betacoronavirus , COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Infecções por Coronavirus/epidemiologia , Humanos , Incidência , Pandemias , Pneumonia Viral/epidemiologia , Prevalência , RNA Ribossômico 16S , Características de Residência , SARS-CoV-2 , Águas Residuárias
17.
Environ Technol ; 40(5): 642-653, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29090613

RESUMO

Improper design and maintenance of stormwater ponds (SWPs) may lead to hypoxic conditions, poor water quality and the production of hydrogen sulfide (H2S). The objective of this study is to develop a comprehensive understanding of hypoxic conditions of SWPs, with a focus on the potential for H2S production and emission. This study was conducted at two retention SWPs in Ottawa, Canada; a problematic pond with the propensity for H2S emission and a reference pond that did not demonstrate H2S emission. The investigation illustrated a significant impact of low dissolved oxygen (DO) concentrations, hypoxic conditions, on the concentration of total sulfides in the water column. Both ponds were shown to periodically experience hypoxic conditions at depth, especially during summer periods with less precipitation and across longer periods of winter, ice-covered conditions. The problem pond, however, was shown to experience lower DO and longer hypoxic conditions than the reference pond in both non-ice-covered and ice-covered conditions due to greater depth and a longer hydraulic retention time. Hypoxic conditions were initiated at the deepest locations in the problem pond and subsequently were spread across the entirety of the pond under winter, ice-covered conditions. Algal biomass (Chlorophyll-a) and soluble biochemical oxygen demand concentrations were shown to not likely be significant factors in the development of hypoxia in the H2S-generating pond. Algal blooms of colonial Chrysophyceae, Synura, a known mixotroph, were observed during ice-covered conditions in the problem pond possibly due to stress-coping mechanisms of algae.


Assuntos
Sulfeto de Hidrogênio , Lagoas , Canadá , Humanos , Hipóxia , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA