Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 18(2): 365-371, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34889343

RESUMO

We investigate the shrinkage of a surface-grafted water-swollen hydrogel under shear flows of oils by laser scanning confocal microscopy. Interestingly, external shear flows of oil lead to linear dehydration and shrinkage of the hydrogel for all investigated flow conditions irrespective of the chemical nature of the hydrogel. The reason is that the finite solubility of water in oil removes water from the hydrogel continuously by diffusion. The flow advects the water-rich oil, as demonstrated by numerical solutions of the underlying convection-diffusion equation. In line with this hypothesis, shear does not cause gel shrinkage for water-saturated oils or non-solvents. The solubility of water in the oil will tune the dehydration dynamics.

2.
Langmuir ; 36(26): 7236-7245, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32496071

RESUMO

To better understand the wetting of cross-linked polydimethylsiloxane (PDMS), we measured advancing and receding contact angles of sessile water drops on cross-linked PDMS as a function of contact line velocity (up to 100 µm/s). Three types of samples were investigated: pristine PDMS, PDMS where oligomers were removed by toluene treatment, and PDMS with an enriched concentration of oligomers. Depending on the velocity of advancing contact lines and the contact time with water, different modes of wetting were observed: one with a relatively low contact angle hysteresis (Δθ ≈ 10°) and one with a larger hysteresis. We attribute the low hysteresis state, called the lubricated state, to the enrichment of free oligomers at the water-PDMS interface. The enrichment of oligomers is induced by drop contact. The kinetics of the transition to the lubricated state can be described by adaptation theory. PDMS adapts to the presence of water by an enrichment of free oligomers at the interface and a correlated reduction in interfacial tension.

3.
iScience ; 24(5): 102460, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027319

RESUMO

Super liquid repellent coatings are among the most promising candidates for self-cleaning surfaces for indoor and outdoor applications. However, the characteristic nano- and micro-scale protrusions can easily be damaged. Improving the durability of these coatings belongs to the most important challenges to increase the coating's application potential. Here, we show that commercial polyester fabrics coated with silicone nanofilaments maintain their self-cleaning properties throughout repeated freezing-unfreezing cycles, ironing, and mechanical stress. The coating improves the heat resistance of the fabric. The surface keeps its water repellency until the fabric is almost destroyed by scratching with sandpaper or a metal sponge. The excellent performance results from the synergetic effects of i) the interwoven structure of the fabric and ii) the intrinsic hydrophobic and flexible nature of the fabric and of the nanofilaments coating. The combination of these factors generates a product which overcomes the most claimed drawbacks of super liquid repellent coatings.

4.
Adv Colloid Interface Sci ; 287: 102329, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302056

RESUMO

Lubricant-impregnated surfaces are two-component surface coatings. One component, a fluid called the lubricant, is stabilized at a surface by the second component, the scaffold. The scaffold can either be a rough solid or a polymeric network. Drops immiscible with the lubricant, hardly pin on these surfaces. Lubricant-impregnated surfaces have been proposed as candidates for various applications, such as self-cleaning, anti-fouling, and anti-icing. The proposed applications rely on the presence of enough lubricant within the scaffold. Therefore, the quality and functionality of a surface coating are, to a large degree, given by the extent to which it prevents lubricant-depletion. This review summarizes the current findings on lubricant-depletion, lubricant-replenishment, and the resulting understanding of both processes. A multitude of different mechanisms can cause the depletion of lubricant. Lubricant can be taken along by single drops or be sheared off by liquid flowing across. Nano-interstices and scaffolds showing good chemical compatibility with the lubricant can greatly delay lubricant depletion. Often, depletion of lubricant cannot be avoided under dynamic conditions, which warrants lubricant-replenishment strategies. The strategies to replenish lubricant are presented and range from spraying or stimuli-responsive release to built-in reservoirs.

5.
Nat Commun ; 12(1): 5358, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504098

RESUMO

Wet and dry foams are prevalent in many industries, ranging from the food processing and commercial cosmetic sectors to industries such as chemical and oil-refining. Uncontrolled foaming results in product losses, equipment downtime or damage and cleanup costs. To speed up defoaming or enable anti-foaming, liquid oil or hydrophobic particles are usually added. However, such additives may need to be later separated and removed for environmental reasons and product quality. Here, we show that passive defoaming or active anti-foaming is possible simply by the interaction of foam with chemically or morphologically modified surfaces, of which the superamphiphobic variant exhibits superior performance. They significantly improve retraction of highly stable wet foams and prevention of growing dry foams, as quantified for beer and aqueous soap solution as model systems. Microscopic imaging reveals that amphiphobic nano-protrusions directly destabilize contacting foam bubbles, which can favorably vent through air gaps warranted by a Cassie wetting state. This mode of interfacial destabilization offers untapped potential for developing efficient, low-power and sustainable foam and froth management.

6.
Phys Chem Chem Phys ; 12(47): 15392-8, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20963236

RESUMO

Heat treatment is a standard method to increase the hardness of silica in various applications. Here, we tested the effect of high temperature annealing on the mechanical properties of silica microcapsules by force spectroscopy under point loads applied to the particle shell. The Young's modulus of the shells moderately increases after annealing at temperatures above 500 °C. Temperatures over 850 °C result in a much stronger increase and the Young's modulus is close to that of fused silica after annealing at 1100 °C. NMR analysis revealed that in untreated microcapsules synthesized by seeded growth using the Stöber method only 55% of the silicon atoms form siloxane bonds with four neighbors, whereas the remaining ones only form three or less siloxane bonds each and, thus, a large number of ethoxy and silanol groups still exist. During annealing at 500 °C, these are successively transformed into siloxane bonds through condensation reactions. This process correlates with only a moderate increase in Young's modulus. The strong increase at temperatures above 850 °C was associated with a densification which was associated by a decrease in capsule size and shell thickness while the shells remained homogenous and of spherical shape. The main strengthening of the shells is thus mainly due to compaction by sintering at length scales significantly larger than that of local siloxane bonds.


Assuntos
Cápsulas/química , Dióxido de Silício/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Siloxanas/química , Temperatura
7.
Sci Adv ; 6(3): eaaw9727, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010764

RESUMO

Despite the enormous interest in superhydrophobicity for self-cleaning, a clear picture of contaminant removal is missing, in particular, on a single-particle level. Here, we monitor the removal of individual contaminant particles on the micrometer scale by confocal microscopy. We correlate this space- and time-resolved information with measurements of the friction force. The balance of capillary and adhesion force between the drop and the contamination on the substrate determines the friction force of drops during self-cleaning. These friction forces are in the range of micro-Newtons. We show that hydrophilic and hydrophobic particles hardly influence superhydrophobicity provided that the particle size exceeds the pore size or the thickness of the contamination falls below the height of the protrusions. These detailed insights into self-cleaning allow the rational design of superhydrophobic surfaces that resist contamination as demonstrated by outdoor environmental (>200 days) and industrial standardized contamination experiments.

8.
Adv Mater ; 31(2): e1801324, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417451

RESUMO

Fouling of thin tubes is a major problem, leading to various infections and associated morbidities, while cleaning is difficult or even impossible. Here, a generic method is introduced to activate and coat the inside of meter-long and at the same time thin (down to 1 mm) tubes with a super-liquid-repellent layer of nanofilaments, exhibiting even antibacterial properties. Activation is facilitated by pumping an oxidative Fenton solution through the tubes. Subsequent pumping of a silane solution renders the surface of the tubes super-liquid-repellent. The wide applicability of the method is demonstrated by coating stiff and flexible tubes made of polymers, inorganic/organic hybrids, metals, and ceramics. Coated medical catheters show excellent antibacterial properties. Notably, the nanofilaments retain their antibacterial properties even in the superhydrophilic state. These findings open new avenues toward the design of biocide-free, antibacterial tubings and catheters.


Assuntos
Antibacterianos , Incrustação Biológica/prevenção & controle , Catéteres , Nanoestruturas , Antibacterianos/síntese química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Desenho de Equipamento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hidrocarbonetos Iodados , Peróxido de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ferro , Oxigênio , Plasma , Polietileno , Silanos , Soluções , Urina
9.
Adv Sci (Weinh) ; 6(11): 1900019, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31179214

RESUMO

Slippery lubricant-infused surfaces allow easy removal of liquid droplets on surfaces. They consist of textured or porous substrates infiltrated with a chemically compatible lubricant. Capillary forces help to keep the lubricant in place. Slippery surfaces hold promising prospects in applications including drag reduction in pipes or food packages, anticorrosion, anti-biofouling, or anti-icing. However, a critical drawback is that shear forces induced by flow lead to depletion of the lubricant. In this work, a way to overcome the shear-induced lubricant depletion by replenishing the lubricant from the flow of emulsions is presented. The addition of small amounts of positively charged surfactant reduces the charge repulsion between the negatively charged oil droplets contained in the emulsion. Attachment and coalescence of oil droplets from the oil-in-water emulsion at the substrate surface fills the structure with the lubricant. Flow-induced lubrication of textured surfaces can be generalized to a broad range of lubricant-solid combinations using minimal amounts of oil.

10.
ACS Nano ; 5(7): 5365-73, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21718051

RESUMO

We have measured the glassy-state structural relaxation of aqueous suspended polystyrene (PS) nanoparticles (the case of soft confinement) and the corresponding silica-capped PS nanoparticles (the case of hard confinement) via differential scanning calorimetry. Suspended and capped PS nanoparticles undergo physical aging under isobaric and isochoric conditions, respectively. With decreasing diameter, suspended and capped PS nanoparticles exhibited reduced and bulk glass transition temperatures (T(g)), respectively. To account for T(g) changes with confinement, all physical aging measurements were performed at a constant value of T(g) - T(a), where T(a) is the aging temperature. With decreasing diameter, aqueous suspended PS nanoparticles exhibited enhanced physical aging rates in comparison to bulk PS. Due to differences in thermodynamic conditions during aging and interfacial effects from nanoconfinement, at all values of T(g) - T(a) investigated, capped PS nanoparticles aged at reduced rates compared to the corresponding aqueous suspended PS nanoparticles. We captured the physical aging behavior of all nanoparticles via the Tool, Narayanaswamy, and Moynihan model of structural relaxation.


Assuntos
Dureza , Nanosferas/química , Poliestirenos/química , Vidro/química , Dióxido de Silício/química , Suspensões , Fatores de Tempo , Temperatura de Transição , Água/química
11.
Faraday Discuss ; 146: 35-48; discussion 79-101, 395-401, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043412

RESUMO

Surface roughness on different length scales is favourable for superhydrophobic behaviour of surfaces. Here we report (i) an improved synthesis for hybrid raspberry-like particles and (ii) a novel method to obtain superhydrophobic films of good mechanical stability. Polystyrene spheres with a diameter of 400 nm-1 microm are decorated with silica colloids < 100 nm in size, thus introducing surface asperities on a second length scale. To improve mechanical resistance, we then coated the polystyrene core and attached silica colloids with a smooth silica shell of 10 nm to 40 nm thickness. All three steps of this synthesis procedure can be sensitively tuned so that the average size and number of the silica colloids as well as the morphology of the resulting raspberry particles can be predicted. As the particles disperse in water, either monolayers can be prepared by dip coating or multilayers by drop casting. Although mechanically stable, the shells are porous enough to allow for leakage of molten or dissolved polystyrene from the core. In tetrahydrofuran vapour polystyrene bridges form between the particles that render the multilayer-film stable. Leaked polystyrene that masks some asperities can be removed by plasma cleaning. Surface roughness on larger scales can be tuned by the drying procedure. The films are hydrophobized by silanization with a semi-fluorinate silane.

12.
Langmuir ; 25(5): 2711-7, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19437752

RESUMO

Core-shell polystyrene-silica spheres with diameters of 800 nm and 1.9 microm were synthesized by soap-free emulsion and dispersion polymerization of the polystyrene core, respectively. The polystyrene spheres were used as templates for the synthesis of silica shells of tunable thickness employing the Stöber method [Graf et al. Langmuir 2003, 19, 6693]. The polystyrene template was removed by thermal decomposition at 500 degrees C, resulting in smooth silica shells of well-defined thickness (15-70 nm). The elastic response of these hollow spheres was probed by atomic force microscopy (AFM). A point load was applied to the particle surface through a sharp AFM tip, and successively increased until the shell broke. In agreement with the predictions of shell theory, for small deformations the deformation increased linearly with applied force. The Young's modulus (18 +/- 6 GPa) was about 4 times smaller than that of fused silica [Adachi and Sakka J. Mater. Sci. 1990, 25, 4732] but identical to that of bulk silica spheres (800 nm) synthesized by the Stöber method, indicating that it yields silica of lower density. The minimum force needed to irreversibly deform (buckle) the shell increased quadratically with shell thickness.

13.
ACS Appl Mater Interfaces ; 1(12): 2862-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20356168

RESUMO

Hierarchically structured titania films for application in hybrid solar cells are prepared by combining microsphere templating and sol-gel chemistry with an amphiphilic diblock copolymer as a structure-directing agent. The films have a functional structure on three size scales: (1) on the micrometer scale a holelike structure for reduction of light reflection, (2) on an intermediate scale macropores for surface roughening and improved infiltration of a hole transport material, and (3) on a nanometer scale a mesoporous structure for charge generation. Poly(dimethyl siloxane)-block-methyl methacrylate poly(ethylene oxide) (PDMS-b-MA(PEO)) is used as a structure-directing agent for the preparation of the mesopore structure, and poly(methyl methacrylate) (PMMA) microspheres act as a template for the micrometer-scale structure. The structure on all levels is modified by the method of polymer extraction as well as by the addition of PMMA particles to the sol-gel solution. Calcination results in structures with increased size and a higher degree of order than extraction with acetic acid. With addition of PMMA a microstructure is created and the size of the mesopores is reduced. Already moderate microstructuring results in a strong decrease in film reflectivity; a minimum reflectivity value of less than 0.1 is obtained by acetic acid treatment and subsequent calcination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA