Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Exp Physiol ; 108(5): 715-727, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36915239

RESUMO

NEW FINDINGS: What is the central question of the study? Can a novel, energy-dense and lightweight ketogenic bar (1000 kcal) consumed 3 h before exercise modulate steady-state incline rucksack march ('ruck') performance compared to isocaloric carbohydrate bars in recreationally active, college-aged men? What is the main finding and its importance? Acute ingestion of either nutritional bar sustained ∼1 h of exhaustive rucking with a 30% of body weight rucksack. This proof-of-concept study is the first to demonstrate that carbohydrate bars and lipid bars are equally feasible for preserving ruck performance. Novel ketogenic nutrition bars may have military-relevant applications to lessen carry load without compromising exercise capacity. ABSTRACT: Rucksack marches ('rucks') are strenuous, military-relevant exercises that may benefit from pre-event fuelling. The purpose of this investigation was to explore whether acute ingestion of carbohydrate- or lipid-based nutritional bars before rucking can elicit unique advantages that augment exercise performance. Recreationally active and healthy males (n = 29) were randomized and counterbalanced to consume 1000 kcal derived from a novel, energy-dense (percentage energy from carbohydrate/fat/protein: 5/83/12) ketogenic bar (KB), or isocaloric high-carbohydrate bars (CB; 61/23/16) 3 h before a time-to-exhaustion (TTE) ruck. Conditions were separated by a 1-week washout. The rucksack weight was standardized to 30% of bodyweight. Steady-state treadmill pace was set at 3.2 km/h (0.89 m/s) and 14% grade. TTE was the primary outcome; respiratory exchange ratio (RER), capillary ketones (R-ß-hydroxybutyrate), glucose and lactate, plus subjective thirst/hunger were the secondary outcomes. Mean TTE was similar between conditions (KB: 55 ± 25 vs. CB: 54 ± 22 min; P = 0.687). The RER and substrate oxidation rates revealed greater fat and carbohydrate oxidation after the KB and CB, respectively (all P < 0.0001). Capillary R-ßHB increased modestly after the KB ingestion (P < 0.0001). Neither bar influenced glycaemia. Lactate increased during the ruck independent of the condition (P < 0.0001). Thirst/fullness perceptions changed independent of the nutritional bar consumed. A novel KB nutritional bar produced equivalent TTE ruck results to the isocaloric CBs. The KB's energy density relative to CB (6.6 vs. 3.8 kcal/g) may provide a lightweight (-42% weight), pre-event fuelling alternative that does not compromise ruck physical performance.


Assuntos
Carboidratos , Exercício Físico , Masculino , Humanos , Adulto Jovem , Oxirredução , Ácido 3-Hidroxibutírico , Lactatos , Carboidratos da Dieta/farmacologia
2.
BMC Anesthesiol ; 23(1): 43, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750771

RESUMO

BACKGROUND: It has been suggested that administration of exogenous ketone supplements (EKSs) not only increases blood ketone body levels but also decreases blood glucose level and modulates isoflurane-induced anesthesia in different rodents, such as Wistar Albino Glaxo Rijswijk (WAG/Rij) rats. Thus, we investigated whether administration of EKSs can modulate the isoflurane anesthesia-generated increase in blood glucose level and the time required to recover from isoflurane-induced anesthesia. METHODS: To investigate the effect of EKSs on isoflurane anesthesia-induced changes in blood glucose and R-ß-hydroxybutyrate (R-ßHB) level as well as recovery time from anesthesia, we used KEMCT (mix of ketone ester/KE and medium chain triglyceride/MCT oil in a 1:1 ratio) in WAG/Rij rats. First, to accustom the animals to the method, water gavage was carried out for 5 days (adaptation period). After adaptation period, rats of first group (group 1) were gavaged by water (3 g/kg), whereas, in the case of second group (group 2), the diet of animals was supplemented by KEMCT (3 g/kg, gavage) once per day for 7 days. One hour after the last gavage, isoflurane (3%) anesthesia was induced for 20 min (group 1 and group 2) and the time required for recovery from anesthesia was measured by using righting reflex. Subsequently, blood levels of both R-ßHB and glucose were also evaluated. Changes in blood glucose and R-ßHB levels were compared to control, which control glucose and R-ßHB levels were measured on the last day of the adaptation period (group 1 and group 2). Time required for recovery from isoflurane anesthesia, which was detected after 7th KEMCT gavage (group 2), was compared to recovery time measured after 7th water gavage (group 1). RESULTS: The KEMCT maintained the normal glucose level under isoflurane anesthesia-evoked circumstances preventing the glucose level elevating effect of isoflurane. Thus, we demonstrated that administration of KEMCT not only increased blood level of R-ßHB but also abolished the isoflurane anesthesia-generated increase in blood glucose level. Moreover, the time required for recovery from isoflurane-evoked anesthesia increased significantly in KEMCT treated animals. CONCLUSIONS: Putative influence of elevated blood ketone body level on isoflurane-evoked effects, such as modulation of blood glucose level and recovery time from anesthesia, should be considered by anesthesiologists.


Assuntos
Anestesia , Isoflurano , Ratos , Animais , Cetonas/farmacologia , Ratos Wistar , Isoflurano/farmacologia , Glicemia , Ácido 3-Hidroxibutírico , Suplementos Nutricionais
3.
J Neurochem ; 158(2): 105-118, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675563

RESUMO

To evaluate the neuroprotection exerted by ketosis against acute damage of the mammalian central nervous system (CNS). Search engines were interrogated to identify experimental studies comparing the mitigating effect of ketosis (intervention) versus non-ketosis (control) on acute CNS damage. Primary endpoint was a reduction in mortality. Secondary endpoints were a reduction in neuronal damage and dysfunction, and an 'aggregated advantage' (composite of all primary and secondary endpoints). Hedges' g was the effect measure. Subgroup analyses evaluated the modulatory effect of age, insult type, and injury site. Meta-regression evaluated timing, type, and magnitude of intervention as predictors of neuroprotection. The selected publications were 49 experimental murine studies (period 1979-2020). The intervention reduced mortality (g 2.45, SE 0.48, p < .01), neuronal damage (g 1.96, SE 0.23, p < .01) and dysfunction (g 0.99, SE 0.10, p < .01). Reduction of mortality was particularly pronounced in the adult subgroup (g 2.71, SE 0.57, p < .01). The aggregated advantage of ketosis was stronger in the pediatric (g 3.98, SE 0.71, p < .01), brain (g 1.96, SE 0.18, p < .01), and ischemic insult (g 2.20, SE 0.23, p < .01) subgroups. Only the magnitude of intervention was a predictor of neuroprotection (g 0.07, SE 0.03, p 0.01 per every mmol/L increase in ketone levels). Ketosis exerts a potent neuroprotection against acute damage to the mammalian CNS in terms of reduction of mortality, of neuronal damage and dysfunction. Hematic levels of ketones are directly proportional to the effect size of neuroprotection.


Assuntos
Doenças do Sistema Nervoso Central/patologia , Cetose/patologia , Neuroproteção , Animais , Lesões Encefálicas Traumáticas/patologia , Dieta Cetogênica , Humanos
4.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R100-R111, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132115

RESUMO

Hyperbaric oxygen (HBO2) is breathing >1 atmosphere absolute (ATA; 101.3 kPa) O2 and is used in HBO2 therapy and undersea medicine. What limits the use of HBO2 is the risk of developing central nervous system (CNS) oxygen toxicity (CNS-OT). A promising therapy for delaying CNS-OT is ketone metabolic therapy either through diet or exogenous ketone ester (KE) supplement. Previous studies indicate that KE induces ketosis and delays the onset of CNS-OT; however, the effects of exogeneous KE on cognition and performance are understudied. Accordingly, we tested the hypothesis that oral gavage with 7.5 g/kg induces ketosis and increases the latency time to seizure (LSz) without impairing cognition and performance. A single oral dose of 7.5 g/kg KE increases systemic ß-hydroxybutyrate (BHB) levels within 0.5 h and remains elevated for 4 h. Male rats were separated into three groups: control (no gavage), water-gavage, or KE-gavage, and were subjected to behavioral testing while breathing 1 ATA (101.3 kPa) of air. Testing included the following: DigiGait (DG), light/dark (LD), open field (OF), and novel object recognition (NOR). There were no adverse effects of KE on gait or motor performance (DG), cognition (NOR), and anxiety (LD, OF). In fact, KE had an anxiolytic effect (OF, LD). The LSz during exposure to 5 ATA (506.6 kPa) O2 (≤90 min) increased 307% in KE-treated rats compared with control rats. In addition, KE prevented seizures in some animals. We conclude that 7.5 g/kg is an optimal dose of KE in the male Sprague-Dawley rat model of CNS-OT.


Assuntos
Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Ésteres/farmacologia , Cetonas/farmacologia , Atividade Motora/efeitos dos fármacos , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/toxicidade , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Ésteres/farmacocinética , Ésteres/toxicidade , Oxigenoterapia Hiperbárica/efeitos adversos , Cetonas/farmacocinética , Cetonas/toxicidade , Masculino , Ratos Sprague-Dawley , Tempo de Reação , Convulsões/etiologia , Convulsões/fisiopatologia , Convulsões/psicologia
5.
BMC Anesthesiol ; 20(1): 30, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000673

RESUMO

BACKGROUND: It has been demonstrated that administration of exogenous ketone supplement ketone salt (KS) and ketone ester (KE) increased blood ketone level and delayed the onset of isoflurane-induced anesthesia in different rodent models, such as Wistar Albino Glaxo Rijswijk (WAG/Rij) rats. The modulatory effect of adenosinergic system may have a role in the ketone supplementation-evoked effects on isoflurane-generated anesthesia. Thus, we investigated whether adenosine receptor antagonists can modulate the effect of exogenous ketone supplements on the onset of akinesia induced by isoflurane. METHODS: To investigate the effect of exogenous ketone supplements on anesthetic induction we used ketone supplement KE, KS, KEKS (1:1 mix of KE and KS), KSMCT and KEMCT (1:1 mix of KS and KE with medium chain triglyceride/MCT oil, respectively) in WAG/Rij rats. Animals were fed with standard diet (SD), which was supplemented by oral gavage of different ketone supplements (2.5 g/kg/day) for 1 week. After 7 days, isoflurane (3%) was administered for 5 min and the time until onset of isoflurane-induced anesthesia (time until immobility; light phase of anesthesia: loss of consciousness without movement) was measured. Changes in levels of blood ß-hydroxybutyrate (ßHB), blood glucose and body weight of animals were also recorded. To investigate the putative effects of adenosine receptors on ketone supplements-evoked influence on isoflurane-induced anesthesia we used a specific adenosine A1 receptor antagonist DPCPX (intraperitoneally/i.p. 0.2 mg/kg) and a selective adenosine A2A receptor antagonist SCH 58261 (i.p. 0.5 mg/kg) alone as well as in combination with KEKS. RESULTS: Significant increases were demonstrated in both blood ßHB levels and the number of seconds required before isoflurane-induced anesthesia (immobility) after the final treatment by all exogenous ketone supplements. Moreover, this effect of exogenous ketone supplements positively correlated with blood ßHB levels. It was also demonstrated that DPCPX completely abolished the effect of KEKS on isoflurane-induced anesthesia (time until immobility), but not SCH 58261. CONCLUSIONS: These findings strengthen our previous suggestion that exogenous ketone supplements may modulate the isoflurane-induced onset of anesthesia (immobility), likely through A1Rs.


Assuntos
Antagonistas do Receptor A1 de Adenosina/administração & dosagem , Anestesia/métodos , Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Cetonas/farmacologia , Cetose/fisiopatologia , Animais , Modelos Animais de Doenças , Cetose/sangue , Masculino , Tempo
6.
J Strength Cond Res ; 34(12): 3463-3474, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28399015

RESUMO

Wilson, JM, Lowery, RP, Roberts, MD, Sharp, MH, Joy, JM, Shields, KA, Partl, JM, Volek, JS, and D'Agostino, DP. Effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training men. J Strength Cond Res 34(12): 3463-3474, 2020-This study investigated the impact of an isocaloric and isonitrogenous ketogenic diet (KD) versus a traditional western diet (WD) on changes in body composition, performance, blood lipids, and hormonal profiles in resistance-trained athletes. Twenty-five college-aged men were divided into a KD or traditional WD from weeks 1 to 10, with a reintroduction of carbohydrates from weeks 10 to 11, while participating in a resistance training program. Body composition, strength, power, and blood lipid profiles were determined at weeks 0, 10, and 11. A comprehensive metabolic panel and testosterone levels were also measured at weeks 0 and 11. Lean body mass (LBM) increased in both the KD and WD groups (2.4% and 4.4%, p < 0.01) at week 10. However, only the KD group showed an increase in LBM between weeks 10 and 11 (4.8%, p < 0.0001). Finally, fat mass decreased in both the KD (-2.2 ± 1.2 kg) and WD groups (-1.5 ± 1.6 kg). Strength and power increased to the same extent in the WD and KD conditions from weeks 1 to 11. No changes in any serum lipid measures occurred from weeks 1 to 10; however, a rapid reintroduction of carbohydrate from weeks 10 to 11 raised plasma triglyceride levels in the KD group. Total testosterone increased significantly from weeks 0 to 11 in the KD diet (118 ng·dl) as compared to the WD (-36 ng·dl) from pre to post while insulin did not change. The KD can be used in combination with resistance training to cause favorable changes in body composition, performance, and hormonal profiles in resistance-trained men.


Assuntos
Composição Corporal/fisiologia , Dieta Cetogênica/métodos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Testosterona/sangue , Adulto , Atletas , Dieta Ocidental , Humanos , Lipídeos/sangue , Masculino , Adulto Jovem
7.
BMC Anesthesiol ; 18(1): 85, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021521

RESUMO

BACKGROUND: Ketogenic diet (KD) and exogenous ketone supplements can evoke sustained ketosis, which may modulate sleep and sleep-like effects. However, no studies have been published examining the effect of ketosis on the onset of general isoflurane induced anesthesia. Therefore, we investigated the effect of the KD and different exogenous ketogenic supplements on the onset of akinesia induced by inhalation of isoflurane. METHODS: We used a high fat, medium protein and low carbohydrate diet (KD) chronically (10 weeks) in the glucose transporter 1 (GLUT1) deficiency (G1D) syndrome mice model and sub-chronically (7 days) in Sprague-Dawley (SPD) rats. To investigate the effect of exogenous ketone supplements on anesthetic induction we also provided either 1) a standard rodent chow diet (SD) mixed with 20% ketone salt supplement (KS), or 2) SD mixed with 20% ketone ester supplement (KE; 1,3 butanediol-acetoacetate diester) to G1D mice for 10 weeks. Additionally, SPD rats and Wistar Albino Glaxo Rijswijk (WAG/Rij) rats were fed the SD, which was supplemented by oral gavage of KS or KE for 7 days (SPD rats: 5 g/kg body weight/day; WAG/Rij rats: 2.5 g/kg body weight/day). After these treatments (10 weeks for the mice, and 7 days for the rats) isoflurane (3%) was administered in an anesthesia chamber, and the time until anesthetic induction (time to immobility) was measured. Blood ketone levels were measured after anesthetic induction and correlation was calculated for blood beta-hydroxybutyrate (ßHB) and anesthesia latency. RESULTS: Both KD and exogenous ketone supplementation increased blood ketone levels and delayed the onset of isoflurane-induced immobility in all investigated rodent models, showing positive correlation between the two measurements. These results demonstrate that elevated blood ketone levels by either KD or exogenous ketones delayed the onset of isoflurane-induced anesthesia in these animal models. CONCLUSIONS: These findings suggest that ketone levels might affect surgical anesthetic needs, or could potentially decrease or delay effects of other narcotic gases.


Assuntos
Anestesia/estatística & dados numéricos , Interações Alimento-Droga , Isoflurano/farmacologia , Cetose/induzido quimicamente , Ácido 3-Hidroxibutírico/sangue , Administração por Inalação , Animais , Dieta Cetogênica/efeitos adversos , Transportador de Glucose Tipo 1/deficiência , Isoflurano/administração & dosagem , Cetonas/sangue , Cetonas/farmacologia , Cetose/sangue , Masculino , Camundongos , Ratos , Especificidade da Espécie , Fatores de Tempo
8.
Neurobiol Dis ; 96: 38-46, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27546058

RESUMO

Angelman syndrome (AS) is a rare genetic and neurological disorder presenting with seizures, developmental delay, ataxia, and lack of speech. Previous studies have indicated that oxidative stress-dependent metabolic dysfunction may underlie the phenotypic deficits reported in the AS mouse model. While the ketogenic diet (KD) has been used to protect against oxidative stress and has successfully treated refractory epilepsy in AS case studies, issues arise due to its strict adherence requirements, in addition to selective eating habits and weight issues reported in patients with AS. We hypothesized that ketone ester supplementation would mimic the KD as an anticonvulsant and improve the behavioral and synaptic plasticity deficits in vivo. AS mice were supplemented R,S-1,3-butanediol acetoacetate diester (KE) ad libitum for eight weeks. KE administration improved motor coordination, learning and memory, and synaptic plasticity in AS mice. The KE was also anticonvulsant and altered brain amino acid metabolism in AS treated animals. Our findings suggest that KE supplementation produces sustained ketosis and ameliorates many phenotypes in the AS mouse model, and should be investigated further for future clinical use.


Assuntos
Síndrome de Angelman/complicações , Ésteres/farmacologia , Ésteres/uso terapêutico , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/patologia , Plasticidade Neuronal/efeitos dos fármacos , Convulsões , Estimulação Acústica/efeitos adversos , Potenciais de Ação/efeitos dos fármacos , Síndrome de Angelman/sangue , Animais , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Ésteres/sangue , Agonistas de Aminoácidos Excitatórios/toxicidade , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Ácido Caínico/toxicidade , Cetonas/sangue , Cetonas/farmacologia , Cetonas/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Desempenho Psicomotor/efeitos dos fármacos , Convulsões/tratamento farmacológico , Convulsões/etiologia , Convulsões/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Carcinogenesis ; 35(3): 515-27, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24343361

RESUMO

Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual's unique physiology.


Assuntos
Neoplasias/metabolismo , Neoplasias/terapia , Metabolismo Energético , Genes p53 , Genes ras , Humanos , Mitocôndrias/metabolismo , Mutação , Neoplasias/genética
10.
Nutrients ; 16(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794716

RESUMO

It has been demonstrated that isoflurane-induced anesthesia can increase the blood glucose level, leading to hyperglycemia and several adverse effects. The administration of a mix of ketone diester (KE) and medium-chain triglyceride (MCT) oil, named KEMCT, abolished the isoflurane-anesthesia-induced increase in blood glucose level and prolonged the recovery time from isoflurane anesthesia in a male preclinical rodent model, Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. While most preclinical studies use exclusively male animals, our previous study on blood glucose changes in response to KEMCT administration showed that the results can be sex-dependent. Thus, in this study, we investigated female WAG/Rij rats, whether KEMCT gavage (3 g/kg/day for 7 days) can change the isoflurane (3%)-anesthesia-induced increase in blood glucose level and the recovery time from isoflurane-evoked anesthesia using the righting reflex. Moreover, KEMCT-induced ketosis may enhance both the extracellular level of adenosine and the activity of adenosine A1 receptors (A1Rs). To obtain information on the putative A1R mechanism of action, the effects of an A1R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine; intraperitoneal/i.p. 0.2 mg/kg), on KEMCT-generated influences were also investigated. Our results show that KEMCT supplementation abolished the isoflurane-anesthesia-induced increase in blood glucose level, and this was abrogated by the co-administration of DPCPX. Nevertheless, KEMCT gavage did not change the recovery time from isoflurane-induced anesthesia. We can conclude that intragastric gavage of exogenous ketone supplements (EKSs), such as KEMCT, can abolish the isoflurane-anesthesia-induced increase in blood glucose level in both sexes likely through A1Rs in WAG/Rij rats, while recovery time was not affected in females, unlike in males. These results suggest that the administration of EKSs as an adjuvant therapy may be effective in mitigating metabolic side effects of isoflurane, such as hyperglycemia, in both sexes.


Assuntos
Anestésicos Inalatórios , Glicemia , Isoflurano , Cetonas , Animais , Feminino , Isoflurano/farmacologia , Isoflurano/administração & dosagem , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Ratos , Cetonas/administração & dosagem , Cetonas/farmacologia , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/farmacologia , Ratos Wistar , Suplementos Nutricionais , Triglicerídeos/sangue , Triglicerídeos/administração & dosagem , Masculino , Adenosina/farmacologia , Adenosina/administração & dosagem , Anestesia/métodos
11.
Med Sci Sports Exerc ; 56(4): 725-736, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051034

RESUMO

PURPOSE: The acute ingestion of a ketone monoester with the coingestion of a carbohydrate (KME + CHO) compared with carbohydrate (CHO) was investigated on cycling performance and cognitive performance in trained females. METHODS: Using a two condition, placebo-controlled, double-blinded and crossover design, 12 trained females (mean ± SD: age, 23 ± 3 yr; height, 1.64 ± 0.08 m; mass, 65.2 ± 12.7 kg) completed a baseline assessment of cognitive performance (psychomotor vigilance testing (PVT), task switching, and incongruent flanker), followed by 6 × 5-min intervals at 40%, 45%, 50%, 55%, 60%, and 65% of their maximal power output (W max ) and then a 10-km time trial, concluding with the same assessments of cognitive performance. Participants consumed either 375 mg·kg -1 body mass of KME with a 6% CHO solution (1 g·min -1 of exercise) or CHO alone, across three boluses (50:25:25). RESULTS: Blood ß-hydroxybutyrate concentrations averaged 1.80 ± 0.07 and 0.13 ± 0.01 mM during exercise in KME + CHO and CHO, respectively. Blood glucose decreased after drink 1 of KME + CHO (~15%; P = 0.01) but not CHO, and lactate concentrations were lower in KME + CHO at 50%, 55%, 60%, and 65% W max (all P < 0.05) compared with CHO. Despite these changes, no differences were found between conditions for time trial finishing times (KME + CHO, 29.7 ± 5.7 min; CHO, 29.6 ± 5.7 min; P = 0.92). However, only KME + CHO resulted in increases in psychomotor vigilance testing speed (~4%; P = 0.01) and faster reaction times (~14%; P < 0.01), speed (~15%; P < 0.01), and correct responses (~13%; P = 0.03) in the incongruent flanker during posttesting compared with CHO. CONCLUSIONS: The acute ingestion of a KME + CHO elevated blood ß-hydroxybutyrate and lowered glucose and lactate across multiple time points during exercise compared with CHO. Although these changes did not affect physical performance, several markers of cognitive performance were improved by the addition of a KME in trained females.


Assuntos
Carboidratos da Dieta , Cetonas , Humanos , Feminino , Adulto Jovem , Adulto , Ácido 3-Hidroxibutírico , Glicemia , Ácido Láctico , Cognição , Estudos Cross-Over , Método Duplo-Cego
12.
Nutrients ; 16(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931176

RESUMO

The global rise in type 2 diabetes (T2D) and obesity necessitates innovative dietary interventions. This study investigates the effects of allulose, a rare sugar shown to reduce blood glucose, in a rat model of diet-induced obesity and T2D. Over 12 weeks, we hypothesized that allulose supplementation would improve body weight, insulin sensitivity, and glycemic control. Our results showed that allulose mitigated the adverse effects of high-fat, high-sugar diets, including reduced body weight gain and improved insulin resistance. The allulose group exhibited lower food consumption and increased levels of glucagon-like peptide-1 (GLP-1), enhancing glucose regulation and appetite control. Additionally, allulose prevented liver triglyceride accumulation and promoted mitochondrial uncoupling in adipose tissue. These findings suggest that allulose supplementation can improve metabolic health markers, making it a promising dietary component for managing obesity and T2D. Further research is needed to explore the long-term benefits and mechanisms of allulose in metabolic disease prevention and management. This study supports the potential of allulose as a safe and effective intervention for improving metabolic health in the context of dietary excess.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Frutose , Resistência à Insulina , Obesidade , Animais , Frutose/administração & dosagem , Masculino , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Ratos , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue , Triglicerídeos/sangue , Ratos Sprague-Dawley , Tecido Adiposo/metabolismo , Aumento de Peso , Modelos Animais de Doenças
13.
J Int Soc Sports Nutr ; 21(1): 2368167, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38934469

RESUMO

POSITION STATEMENT: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the use of a ketogenic diet in healthy exercising adults, with a focus on exercise performance and body composition. However, this review does not address the use of exogenous ketone supplements. The following points summarize the position of the ISSN.1. A ketogenic diet induces a state of nutritional ketosis, which is generally defined as serum ketone levels above 0.5 mM. While many factors can impact what amount of daily carbohydrate intake will result in these levels, a broad guideline is a daily dietary carbohydrate intake of less than 50 grams per day.2. Nutritional ketosis achieved through carbohydrate restriction and a high dietary fat intake is not intrinsically harmful and should not be confused with ketoacidosis, a life-threatening condition most commonly seen in clinical populations and metabolic dysregulation.3. A ketogenic diet has largely neutral or detrimental effects on athletic performance compared to a diet higher in carbohydrates and lower in fat, despite achieving significantly elevated levels of fat oxidation during exercise (~1.5 g/min).4. The endurance effects of a ketogenic diet may be influenced by both training status and duration of the dietary intervention, but further research is necessary to elucidate these possibilities. All studies involving elite athletes showed a performance decrement from a ketogenic diet, all lasting six weeks or less. Of the two studies lasting more than six weeks, only one reported a statistically significant benefit of a ketogenic diet.5. A ketogenic diet tends to have similar effects on maximal strength or strength gains from a resistance training program compared to a diet higher in carbohydrates. However, a minority of studies show superior effects of non-ketogenic comparators.6. When compared to a diet higher in carbohydrates and lower in fat, a ketogenic diet may cause greater losses in body weight, fat mass, and fat-free mass, but may also heighten losses of lean tissue. However, this is likely due to differences in calorie and protein intake, as well as shifts in fluid balance.7. There is insufficient evidence to determine if a ketogenic diet affects males and females differently. However, there is a strong mechanistic basis for sex differences to exist in response to a ketogenic diet.


Assuntos
Desempenho Atlético , Dieta Cetogênica , Fenômenos Fisiológicos da Nutrição Esportiva , Humanos , Desempenho Atlético/fisiologia , Composição Corporal , Cetose , Ciências da Nutrição e do Esporte , Carboidratos da Dieta/administração & dosagem , Exercício Físico/fisiologia , Resistência Física/fisiologia
14.
Am J Physiol Regul Integr Comp Physiol ; 304(10): R829-36, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23552496

RESUMO

Central nervous system oxygen toxicity (CNS-OT) seizures occur with little or no warning, and no effective mitigation strategy has been identified. Ketogenic diets (KD) elevate blood ketones and have successfully treated drug-resistant epilepsy. We hypothesized that a ketone ester given orally as R,S-1,3-butanediol acetoacetate diester (BD-AcAc(2)) would delay CNS-OT seizures in rats breathing hyperbaric oxygen (HBO(2)). Adult male rats (n = 60) were implanted with radiotelemetry units to measure electroencephalogram (EEG). One week postsurgery, rats were administered a single oral dose of BD-AcAc(2), 1,3-butanediol (BD), or water 30 min before being placed into a hyperbaric chamber and pressurized to 5 atmospheres absolute (ATA) O2. Latency to seizure (LS) was measured from the time maximum pressure was reached until the onset of increased EEG activity and tonic-clonic contractions. Blood was drawn at room pressure from an arterial catheter in an additional 18 animals that were administered the same compounds, and levels of glucose, pH, Po(2), Pco(2), ß-hydroxybutyrate (BHB), acetoacetate (AcAc), and acetone were analyzed. BD-AcAc(2) caused a rapid (30 min) and sustained (>4 h) elevation of BHB (>3 mM) and AcAc (>3 mM), which exceeded values reported with a KD or starvation. BD-AcAc(2) increased LS by 574 ± 116% compared with control (water) and was due to the effect of AcAc and acetone but not BHB. BD produced ketosis in rats by elevating BHB (>5 mM), but AcAc and acetone remained low or undetectable. BD did not increase LS. In conclusion, acute oral administration of BD-AcAc(2) produced sustained ketosis and significantly delayed CNS-OT seizures by elevating AcAc and acetone.


Assuntos
Acetoacetatos/uso terapêutico , Encéfalo/efeitos dos fármacos , Butileno Glicóis/uso terapêutico , Cetose/induzido quimicamente , Oxigênio , Convulsões/tratamento farmacológico , Acetoacetatos/farmacologia , Animais , Glicemia , Encéfalo/fisiopatologia , Butileno Glicóis/farmacologia , Eletroencefalografia , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/fisiopatologia , Telemetria
15.
Nutrients ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111040

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive disease of neuronal degeneration in the motor cortex, brainstem, and spinal cord, resulting in impaired motor function and premature demise as a result of insufficient respiratory drive. ALS is associated with dysfunctions in neurons, neuroglia, muscle cells, energy metabolism, and glutamate balance. Currently, there is not a widely accepted, effective treatment for this condition. Prior work from our lab has demonstrated the efficacy of supplemental nutrition with the Deanna Protocol (DP). In the present study, we tested the effects of three different treatments in a mouse model of ALS. These treatments were the DP alone, a glutamate scavenging protocol (GSP) alone, and a combination of the two treatments. Outcome measures included body weight, food intake, behavioral assessments, neurological score, and lifespan. Compared to the control group, DP had a significantly slower decline in neurological score, strength, endurance, and coordination, with a trend toward increased lifespan despite a greater loss of weight. GSP had a significantly slower decline in neurological score, strength, endurance, and coordination, with a trend toward increased lifespan. DP+GSP had a significantly slower decline in neurological score with a trend toward increased lifespan, despite a greater loss of weight. While each of the treatment groups fared better than the control group, the combination of the DP+GSP was not better than either of the individual treatments. We conclude that the beneficial effects of the DP and the GSP in this ALS mouse model are distinct, and appear to offer no additional benefit when combined.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Superóxido Dismutase/metabolismo
16.
Front Nutr ; 10: 1084021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845048

RESUMO

High carbohydrate, low fat (HCLF) diets have been the predominant nutrition strategy for athletic performance, but recent evidence following multi-week habituation has challenged the superiority of HCLF over low carbohydrate, high fat (LCHF) diets, along with growing interest in the potential health and disease implications of dietary choice. Highly trained competitive middle-aged athletes underwent two 31-day isocaloric diets (HCLF or LCHF) in a randomized, counterbalanced, and crossover design while controlling calories and training load. Performance, body composition, substrate oxidation, cardiometabolic, and 31-day minute-by-minute glucose (CGM) biomarkers were assessed. We demonstrated: (i) equivalent high-intensity performance (@∼85%VO2max), fasting insulin, hsCRP, and HbA1c without significant body composition changes across groups; (ii) record high peak fat oxidation rates (LCHF:1.58 ± 0.33g/min @ 86.40 ± 6.24%VO2max; 30% subjects > 1.85 g/min); (iii) higher total, LDL, and HDL cholesterol on LCHF; (iv) reduced glucose mean/median and variability on LCHF. We also found that the 31-day mean glucose on HCLF predicted 31-day glucose reductions on LCHF, and the 31-day glucose reduction on LCHF predicted LCHF peak fat oxidation rates. Interestingly, 30% of athletes had 31-day mean, median and fasting glucose > 100 mg/dL on HCLF (range: 111.68-115.19 mg/dL; consistent with pre-diabetes), also had the largest glycemic and fat oxidation response to carbohydrate restriction. These results: (i) challenge whether higher carbohydrate intake is superior for athletic performance, even during shorter-duration, higher-intensity exercise; (ii) demonstrate that lower carbohydrate intake may be a therapeutic strategy to independently improve glycemic control, particularly in those at risk for diabetes; (iii) demonstrate a unique relationship between continuous glycemic parameters and systemic metabolism.

17.
Nutrients ; 13(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34836344

RESUMO

It has been previously demonstrated that KEKS food containing exogenous ketogenic supplement ketone salt (KS) and ketone ester (KE) decreased the lipopolysaccharide (LPS)-generated increase in SWD (spike-wave discharge) number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, likely through ketosis. KEKS-supplemented food-generated ketosis may increase adenosine levels, and may thus modulate both neuroinflammatory processes and epileptic activity through adenosine receptors (such as A1Rs and A2ARs). To determine whether these adenosine receptors are able to modify the KEKS food-generated alleviating effect on LPS-evoked increases in SWD number, an antagonist of A1R DPCPX (1,3-dipropyl-8-cyclopentylxanthine; 0.2 mg/kg) with LPS (50 µg/kg) and an antagonist of A2AR SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; 0.5 mg/kg) with LPS were co-injected intraperitoneally (i.p.) on the ninth day of KEKS food administration, and their influence not only on the SWD number, but also on blood glucose, R-beta-hydroxybutyrate (R-ßHB) levels, and body weight were measured. We showed that inhibition of A1Rs abolished the alleviating effect of KEKS food on LPS-generated increases in the SWD number, whereas blocking A2ARs did not significantly modify the KEKS food-generated beneficial effect. Our results suggest that the neuromodulatory benefits of KEKS-supplemented food on absence epileptic activity are mediated primarily through A1R, not A2AR.


Assuntos
Suplementos Nutricionais , Epilepsia Tipo Ausência/prevenção & controle , Cetonas/administração & dosagem , Pirimidinas/farmacologia , Triazóis/farmacologia , Xantinas/farmacologia , Ácido 3-Hidroxibutírico/sangue , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Injeções Intraperitoneais , Cetose/sangue , Cetose/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Antagonistas de Receptores Purinérgicos P1 , Ratos , Ratos Wistar , Receptores Purinérgicos P1/efeitos dos fármacos
18.
Front Nutr ; 8: 783659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004814

RESUMO

Diverse neurological disorders are associated with a deficit in brain energy metabolism, often characterized by acute or chronic glucose hypometabolism. Ketones serve as the brain's only significant alternative fuel and can even become the primary fuel in conditions of limited glucose availability. Thus, dietary supplementation with exogenous ketones represents a promising novel therapeutic strategy to help meet the energetic needs of the brain in an energy crisis. Preliminary evidence suggests ketosis induced by exogenous ketones may attenuate damage or improve cognitive and motor performance in neurological conditions such as seizure disorders, mild cognitive impairment, Alzheimer's disease, and neurotrauma.

19.
Front Med (Lausanne) ; 8: 699427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395478

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a debilitating inflammatory respiratory condition that presents with worsening breathing difficulties and it is assumed to be progressive and incurable. As an inflammatory disease, COPD is associated with recruitment of immune cells to lung tissue and increased levels of pro-inflammatory cytokines, including TNF-α, IL-1ß, IL-6, IL-8, and GM-CSF. Low-carbohydrate ketogenic diets have anti-inflammatory properties that could, in theory, improve COPD symptoms and progression. Herein, we report on a 54-year-old patient (C.A.) with COPD who adopted a ketogenic diet (70% calories from fat). Subsequently, C.A. experienced a reduction in inflammatory markers in association with a meaningful improvement in lung function. His inflammatory markers decreased into the normal range and his forced expiratory volume increased by 37.5% relative to its pre-ketogenic diet value. Future research should explore nutritional ketosis and ketogenic diets as possible therapeutic options for individuals with COPD.

20.
Nutrients ; 13(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467454

RESUMO

Both uridine and exogenous ketone supplements decreased the number of spike-wave discharges (SWDs) in a rat model of human absence epilepsy Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. It has been suggested that alleviating influence of both uridine and ketone supplements on absence epileptic activity may be modulated by A1 type adenosine receptors (A1Rs). The first aim was to determine whether intraperitoneal (i.p.) administration of a specific A1R antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 0.2 mg/kg) and a selective adenosine A2A receptor antagonist (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine) (SCH 58261; 0.5 mg/kg) have a modulatory influence on i.p. 1000 mg/kg uridine-evoked effects on SWD number in WAG/Rij rats. The second aim was to assess efficacy of a sub-effective dose of uridine (i.p. 250 mg/kg) combined with beta-hydroxybutyrate salt + medium chain triglyceride (KSMCT; 2.5 g/kg, gavage) on absence epilepsy. DPCPX completely abolished the i.p. 1000 mg/kg uridine-evoked alleviating effect on SWD number whereas SCH 58261 was ineffective, confirming the A1R mechanism. Moreover, the sub-effective dose of uridine markedly enhanced the effect of KSMCT (2.5 g/kg, gavage) on absence epileptic activity. These results demonstrate the anti-epilepsy benefits of co-administrating uridine and exogenous ketone supplements as a means to treat absence epilepsy.


Assuntos
Ração Animal , Epilepsia Tipo Ausência/metabolismo , Cetonas/administração & dosagem , Uridina/administração & dosagem , Animais , Anticonvulsivantes/administração & dosagem , Biomarcadores , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/diagnóstico , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/etiologia , Glucose/metabolismo , Ratos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA