Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Chem Biol ; 18(6): 652-658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618928

RESUMO

The γ-butyrolactone motif is found in many natural signaling molecules and other specialized metabolites. A prominent example is the potent aquatic phytotoxin cyanobacterin, which has a highly functionalized γ-butyrolactone core structure. The enzymatic machinery that assembles cyanobacterin and structurally related natural products (herein termed furanolides) has remained elusive for decades. Here, we elucidate the biosynthetic process of furanolide assembly. The cyanobacterin biosynthetic gene cluster was identified by targeted bioinformatic screening and validated by heterologous expression in Escherichia coli. Full functional evaluation of the recombinant key enzymes in vivo and in vitro, individually and in concert, provided in-depth mechanistic insights into a streamlined C-C bond-forming cascade that involves installation of compatible reactivity at seemingly unreactive Cα positions of amino acid precursors. Our work extends the biosynthetic and biocatalytic toolbox for γ-butyrolactone formation, provides a general paradigm for furanolide biosynthesis and sets the stage for their targeted discovery, biosynthetic engineering and enzymatic synthesis.


Assuntos
4-Butirolactona , Produtos Biológicos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Produtos Biológicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Família Multigênica
2.
Nat Prod Rep ; 40(11): 1701-1717, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37233731

RESUMO

Covering: up to 2023Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.


Assuntos
Produtos Biológicos , Cianobactérias , Urocordados , Animais , Produtos Biológicos/química , Cianobactérias/genética , Cianobactérias/química , Simbiose , Fungos
3.
Org Biomol Chem ; 21(23): 4893-4908, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259568

RESUMO

Radiosumins are a structurally diverse family of low molecular weight natural products that are produced by cyanobacteria and exhibit potent serine protease inhibition. Members of this family are dipeptides characterized by the presence of two similar non-proteinogenic amino acids. Here we used a comparative bioinformatic analysis to identify radiosumin biosynthetic gene clusters from the genomes of 13 filamentous cyanobacteria. We used direct pathway cloning to capture and express the entire 16.8 kb radiosumin biosynthetic gene cluster from Dolichospermum planctonicum UHCC 0167 in Escherichia coli. Bioinformatic analysis demonstrates that radiosumins represent a new group of chorismate-derived non-aromatic secondary metabolites. High-resolution liquid chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy and chemical degradation analysis revealed that cyanobacteria produce a cocktail of novel radiosumins. We report the chemical structure of radiosumin D, an N-methyl dipeptide, containing a special Aayp (2-amino-3-(4-amino-2-cyclohexen-1-ylidene) propionic acid) with R configuration that differs from radiosumin A-C, an N-Me derivative of Aayp (Amyp) and two acetyl groups. Radiosumin C inhibits all three human trypsin isoforms at micromolar concentrations with preference for trypsin-1 and -3 (IC50 values from 1.7 µM to >7.2 µM). These results provide a biosynthetic logic to explore the genetic and chemical diversity of the radiosumin family and suggest that these natural products may be a source of drug leads for selective human serine proteases inhibitors.


Assuntos
Produtos Biológicos , Biologia Computacional , Humanos , Tripsina/genética , Tripsina/metabolismo , Dipeptídeos/metabolismo , Clonagem Molecular , Família Multigênica , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética
4.
J Appl Microbiol ; 133(4): 2560-2568, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35880373

RESUMO

AIMS: Sequencing and genome analysis of two co-isolated streptomycetes, named BV410-1 and BV410-10, and the effect of their co-cultivation on the staurosporine production. METHODS AND RESULTS: Identification of two strains through genome sequencing and their separation using different growth media was conducted. Sequence analysis revealed that the genome of BV410-1 was 9.5 Mb, whilst that of BV410-10 was 7.1 Mb. AntiSMASH analysis identified 28 biosynthetic gene clusters (BGCs) from BV410-1, including that responsible for staurosporine biosynthesis, whilst 20 BGCs were identified from BV410-10. The addition of cell-free supernatant from BV410-10 monoculture to BV410-1 fermentations improved the staurosporine yield from 8.35 mg L-1 up to 15.85 mg L-1 , whilst BV410-10 monoculture ethyl acetate extract did not have the same effect. Also, there was no improvement in staurosporine production when artificial mixed cultures were created using three different BV410-1 and BV410-10 spore ratios. CONCLUSIONS: The growth of BV410-10 was inhibited when the two strains were grown together on agar plates. Culture supernatants of BV410-10 showed potential to stimulate staurosporine production in BV410-1, but overall co-cultivation attempts did not restore the previously reported yield of staurosporine produced by the original mixed isolate. SIGNIFICANCE AND IMPACT OF STUDY: This work confirmed complex relations between streptomycetes in soil that are difficult to recreate under the laboratory conditions. Also, mining of streptomycetes genomes that mainly produce known bioactive compounds could still be the fruitful approach in search for novel bioactive molecules.


Assuntos
Streptomyces , Ágar , Família Multigênica , Solo , Estaurosporina/farmacologia , Streptomyces/genética
5.
Environ Microbiol ; 23(1): 405-414, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200490

RESUMO

Raphidiopsis raciborskii is an invasive bloom-forming cyanobacteria with the flexibility to utilize atmospheric and fixed nitrogen. Since nitrogen-fixation has a high requirement for iron as an ezyme cofactor, we hypothesize that iron availability would determine the success of the species under nitrogen-fixing conditions. This study compares the proteomic response of cylindrospermopsin-producing and non-toxic strains of R. racibroskii to reduced iron concentrations, under nitrogen-fixing conditions, to examine any strain-specific adaptations that might increase fitness under these conditions. We also compared their proteomic responses at exponential and stationary growth phases to capture the changes throughout the growth cycle. Overall, the toxic strain was more competitive under Fe-starved conditions during exponential phase, with upregulated growth and transport-related proteins. The non-toxic strain showed reduced protein expression across multiple primary metabolism pathways. We propose that the increased expression of porin proteins during the exponential growth phase enables toxic strains to persist under Fe-starved conditions with this ability providing a potential explanation for the increased fitness of cylindrospermoipsin-producing strains during unfavourable environmental conditions.


Assuntos
Cylindrospermopsis/metabolismo , Ferro/metabolismo , Aclimatação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Cylindrospermopsis/genética , Cylindrospermopsis/crescimento & desenvolvimento , Fixação de Nitrogênio , Proteômica
6.
Environ Microbiol ; 23(7): 3646-3664, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33140504

RESUMO

Actinobacteria and Proteobacteria are important producers of bioactive natural products (NP), and these phyla dominate in the arid soils of Antarctica, where metabolic adaptations influence survival under harsh conditions. Biosynthetic gene clusters (BGCs) which encode NPs, are typically long and repetitious high G + C regions difficult to sequence with short-read technologies. We sequenced 17 Antarctic soil bacteria from multi-genome libraries, employing the long-read PacBio platform, to optimize capture of BGCs and to facilitate a comprehensive analysis of their NP capacity. We report 13 complete bacterial genomes of high quality and contiguity, representing 10 different cold-adapted genera including novel species. Antarctic BGCs exhibited low similarity to known compound BGCs (av. 31%), with an abundance of terpene, non-ribosomal peptide and polyketide-encoding clusters. Comparative genome analysis was used to map BGC variation between closely related strains from geographically distant environments. Results showed the greatest biosynthetic differences to be in a psychrotolerant Streptomyces strain, as well as a rare Actinobacteria genus, Kribbella, while two other Streptomyces spp. were surprisingly similar to known genomes. Streptomyces and Kribbella BGCs were predicted to encode antitumour, antifungal, antibacterial and biosurfactant-like compounds, and the synthesis of NPs with antibacterial, antifungal and surfactant properties was confirmed through bioactivity assays.


Assuntos
Produtos Biológicos , Streptomyces , Regiões Antárticas , Genômica , Filogenia , Solo
7.
BMC Microbiol ; 20(1): 35, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32070286

RESUMO

BACKGROUND: Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin (sxt) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. RESULTS: In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5' RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, PsxtPER1 and PsxtPER2. In E. coli, strong expression of lux from PsxtP, PsxtD and PsxtPER1 was observed while expression from Porf24 and PsxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from PsxtP, PsxtPER1, and Porf24 promoters was statistically higher compared to the non-promoter control, while PsxtD showed poor activity under the described conditions. CONCLUSIONS: Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Saxitoxina/biossíntese , Cianobactérias/metabolismo , Modelos Genéticos , Família Multigênica , Regiões Promotoras Genéticas , Saxitoxina/genética
8.
J Org Chem ; 85(2): 664-673, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31746205

RESUMO

Genome sequencing and bioinformatic analysis have identified numerous cryptic gene clusters that have the potential to produce novel natural products. Within this work, we identified a cryptic type II PKS gene cluster (skt) from Streptomyces sp. Tü 6314. Facilitated by linear plus linear homologous recombination-mediated recombineering (LLHR), we directly cloned the skt gene cluster using the Streptomyces site-specific integration vector pSET152. Direct cloning allowed for rapid heterologous expression in Streptomyces coelicolor, leading to the identification and structural characterization of six polyketides (three known compounds and new streptoketides), four of which exhibit anti-HIV activities. Our study shows that the pSET152 vector can be directly used for LLHR, expanding the Rec/ET direct cloning toolbox and providing the possibility for rapid heterologous expression of gene clusters from Streptomyces.


Assuntos
Regulação Bacteriana da Expressão Gênica , Família Multigênica , Policetídeo Sintases/genética , Policetídeos/isolamento & purificação , Streptomyces/enzimologia , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Clonagem Molecular , Testes de Sensibilidade Microbiana , Policetídeos/química , Policetídeos/farmacologia , Análise Espectral/métodos , Streptomyces/genética
9.
Environ Microbiol ; 21(2): 702-715, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30589201

RESUMO

Shark Bay, Western Australia is a World Heritage area with extensive microbial mats and stromatolites. Microbial communities that comprise these mats have developed a range of mitigation strategies against changing levels of photosynthetically active and ultraviolet radiation, including the ability to biosynthesise the UV-absorbing natural products scytonemin and mycosporine-like amino acids (MAAs). To this end, the distribution of photoprotective pigments within Shark Bay microbial mats was delineated in the present study. This involved amplicon sequencing of bacterial 16S rDNA from communities at the surface and subsurface in three distinct mat types (smooth, pustular and tufted), and correlating this data with the chemical and molecular distribution of scytonemin and MAAs. Employing UV spectroscopy and MS/MS fragmentation, mycosporine-glycine, asterina and an unknown MAA were identified based on typical fragmentation patterns. Marker genes for scytonemin and MAA production (scyC and mysC) were amplified from microbial mat DNA and placed into phylogenetic context against a broad screen throughout 363 cyanobacterial genomes. Results indicate that occurrence of UV screening compounds is associated with the upper layer of Shark Bay microbial mats, and the occurrence of scytonemin is closely dependent on the abundance of cyanobacteria.


Assuntos
Aminoácidos/metabolismo , Baías/microbiologia , Cianobactérias/isolamento & purificação , Indóis/metabolismo , Fenóis/metabolismo , Filogenia , Austrália , Biologia Computacional , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/metabolismo , Glicina/metabolismo , Microbiota/efeitos da radiação , Fotossíntese , Espectrometria de Massas em Tandem , Raios Ultravioleta
10.
Int Microbiol ; 22(3): 343-353, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30810997

RESUMO

The objective of the present study was to isolate Actinobacteria, preferably Streptomyces spp. from the rhizosphere soils of three ethno-medicinal plants collected in Serbia (Papaver rhoeas, Matricaria chamomilla, and Urtica dioica) and to screen their antifungal activity against Candida spp. Overall, 103 sporulating isolates were collected from rhizosphere soil samples and determined as Streptomyces spp. Two different media and two extraction procedures were used to facilitate identification of antifungals. Overall, 412 crude cell extracts were tested against Candida albicans using disk diffusion assays, with 42% (43/103) of the strains showing the ability to produce antifungal agents. Also, extracts inhibited growth of important human pathogens: Candida krusei, Candida parapsilosis, and Candida glabrata. Based on the established degree and range of antifungal activity, nine isolates, confirmed as streptomycetes by 16S rRNA sequencing, were selected for further testing. Their ability to inhibit Candida growth in liquid culture, to inhibit biofilm formation, and to disperse pre-formed biofilms was assessed with active concentrations from 8 to 250 µg/mL. High-performance liquid chromatographic profiles of extracts derived from selected strains were recorded, revealing moderate metabolic diversity. Our results proved that rhizosphere soil of ethno-medicinal plants is a prolific source of streptomycetes, producers of potentially new antifungal compounds.


Assuntos
Antifúngicos/metabolismo , Candida/efeitos dos fármacos , Plantas Medicinais/microbiologia , Rizosfera , Microbiologia do Solo , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Candida/crescimento & desenvolvimento , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sérvia , Streptomyces/classificação , Streptomyces/genética
11.
Microb Cell Fact ; 18(1): 32, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732610

RESUMO

BACKGROUND: Serratia plymuthica WS3236 was selected for whole genome sequencing based on preliminary genetic and chemical screening indicating the presence of multiple natural product pathways. This led to the identification of a putative sodorifen biosynthetic gene cluster (BGC). The natural product sodorifen is a volatile organic compound (VOC) with an unusual polymethylated hydrocarbon bicyclic structure (C16H26) produced by selected strains of S. plymuthica. The BGC encoding sodorifen consists of four genes, two of which (sodA, sodB) are homologs of genes encoding enzymes of the non-mevalonate pathway and are thought to enhance the amounts of available farnesyl pyrophosphate (FPP), the precursor of sodorifen. Proceeding from FPP, only two enzymes are necessary to produce sodorifen: an S-adenosyl methionine dependent methyltransferase (SodC) with additional cyclisation activity and a terpene-cyclase (SodD). Previous analysis of S. plymuthica found sodorifen production titers are generally low and vary significantly among different producer strains. This precludes studies on the still elusive biological function of this structurally and biosynthetically fascinating bacterial terpene. RESULTS: Sequencing and mining of the S. plymuthica WS3236 genome revealed the presence of 38 BGCs according to antiSMASH analysis, including a putative sodorifen BGC. Further genome mining for sodorifen and sodorifen-like BGCs throughout bacteria was performed using SodC and SodD as queries and identified a total of 28 sod-like gene clusters. Using direct pathway cloning (DiPaC) we intercepted the 4.6 kb candidate sodorifen BGC from S. plymuthica WS3236 (sodA-D) and transformed it into Escherichia coli BL21. Heterologous expression under the control of the tetracycline inducible PtetO promoter firmly linked this BGC to sodorifen production. By utilizing this newly established expression system, we increased the production yields by approximately 26-fold when compared to the native producer. In addition, sodorifen was easily isolated in high purity by simple head-space sampling. CONCLUSIONS: Genome mining of all available genomes within the NCBI and JGI IMG databases led to the identification of a wealth of sod-like pathways which may be responsible for producing a range of structurally unknown sodorifen analogs. Introduction of the S. plymuthica WS3236 sodorifen BGC into the fast-growing heterologous expression host E. coli with a very low VOC background led to a significant increase in both sodorifen product yield and purity compared to the native producer. By providing a reliable, high-level production system, this study sets the stage for future investigations of the biological role and function of sodorifen and for functionally unlocking the bioinformatically identified putative sod-like pathways.


Assuntos
Compostos Bicíclicos com Pontes/metabolismo , Escherichia coli/metabolismo , Família Multigênica , Octanos/metabolismo , Serratia/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Clonagem Molecular , Biologia Computacional , Escherichia coli/genética , Genoma Bacteriano , Pirofosfatases/metabolismo
12.
Environ Microbiol ; 18(2): 461-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26568470

RESUMO

In Australia, saxitoxin production is strain dependent within the bloom-forming freshwater cyanobacterium Anabaena circinalis. Freshwater cyanobacteria are exposed to rapid fluctuations in environmental nutrient concentrations, and their adaption is vital for competition, succession and dominance. Two elements of environmental significance, phosphorus and sodium chloride, are proposed to play a role in bloom development and saxitoxin biosynthesis respectively. The aim of our study was to comparatively analyse the model saxitoxin-producing A. circinalis AWQC131C and non-toxic A. circinalis AWQC310F at the genomic level and proteomic level, in response to phosphate depletion and increased extracellular NaCl. When challenged, photosynthesis, carbon/nitrogen metabolisms, transcription/translation, oxidative stress and nutrient transport functional categories demonstrated the largest changes in protein abundance. In response to increased NaCl, SxtC, a protein conserved in all known saxitoxin biosynthetic pathways, was downregulated. Additionally, toxin quantification revealed a decrease in total saxitoxin and decarbomoyl-gonyautoxin2/3 content in response to the NaCl treatment. In response to phosphate depletion, the toxic and non-toxic strain displayed similar proteomic profiles, although the toxic strain did not alter the abundance of as many proteins as the non-toxic strain. These findings have important implications for the future, since response and adaption mechanisms are directly related to in situ dominance of cyanobacteria.


Assuntos
Adaptação Fisiológica/genética , Anabaena/metabolismo , Proliferação Nociva de Algas , Fosfatos/deficiência , Saxitoxina/biossíntese , Cloreto de Sódio/metabolismo , Anabaena/genética , Austrália , Sequência de Bases , Vias Biossintéticas/genética , DNA Bacteriano/genética , Genoma , Genômica , Dados de Sequência Molecular , Fotossíntese/genética , Proteômica , Análise de Sequência de DNA
13.
Appl Environ Microbiol ; 82(19): 5951-9, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474710

RESUMO

UNLABELLED: The mycosporine-like amino acids (MAAs) are a group of small molecules with a diverse ecological distribution among microorganisms. MAAs have a range of physiological functions, including protection against UV radiation, making them important from a biotechnological perspective. In the present study, we identified a putative MAA (mys) gene cluster in two New Zealand isolates of Scytonema cf. crispum (UCFS10 and UCFS15). Homology to "Anabaena-type" mys clusters suggested that this cluster was likely to be involved in shinorine biosynthesis. Surprisingly, high-performance liquid chromatography analysis of S cf. crispum cell extracts revealed a complex MAA profile, including shinorine, palythine-serine, and their hexose-bound variants. It was hypothesized that a short-chain dehydrogenase (UCFS15_00405) encoded by a gene adjacent to the S cf. crispum mys cluster was responsible for the conversion of shinorine to palythine-serine. Heterologous expression of MysABCE and UCFS15_00405 in Escherichia coli resulted in the exclusive production of the parent compound shinorine. Taken together, these results suggest that shinorine biosynthesis in S cf. crispum proceeds via an Anabaena-type mechanism and that the genes responsible for the production of other MAA analogues, including palythine-serine and glycosylated analogues, may be located elsewhere in the genome. IMPORTANCE: Recently, New Zealand isolates of S cf. crispum were linked to the production of paralytic shellfish toxins for the first time, but no other natural products from this species have been reported. Thus, the species was screened for important natural product biosynthesis. The mycosporine-like amino acids (MAAs) are among the strongest absorbers of UV radiation produced in nature. The identification of novel MAAs is important from a biotechnology perspective, as these molecules are able to be utilized as sunscreens. This study has identified two novel MAAs that have provided several new avenues of future research related to MAA genetics and biosynthesis. Further, we have revealed that the genetic basis of MAA biosynthesis may not be clustered on the genome. The identification of the genes responsible for MAA biosynthesis is vital for future genetic engineering.


Assuntos
Aminoácidos/metabolismo , Cianobactérias/genética , Cicloexanóis/metabolismo , Cicloexilaminas/metabolismo , Genes Bacterianos , Glicina/análogos & derivados , Família Multigênica , Cianobactérias/metabolismo , Glicina/metabolismo , Nova Zelândia , Análise de Sequência de DNA , Protetores Solares/análise
14.
Appl Environ Microbiol ; 82(19): 5918-29, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474713

RESUMO

UNLABELLED: The hepatotoxin microcystin (MCYST) is produced by a variety of freshwater cyanobacterial species, including Microcystis aeruginosa Interestingly, MCYST-producing M. aeruginosa strains have been shown to outcompete their nontoxic counterparts under iron-limiting conditions. However, the reasons for this are unclear. Here we examined the proteomic response of M. aeruginosa PCC 7806 continuous cultures under different iron and growth regimes. Iron limitation was correlated with a global reduction in levels of proteins associated with energy metabolism and photosynthesis. These proteomic changes were consistent with physiological observations, including reduced chlorophyll a content and reduced cell size. While levels of MCYST biosynthesis proteins did not fluctuate during the study period, both intra- and extracellular toxin quotas were significantly higher under iron-limiting conditions. Our results support the hypothesis that intracellular MCYST plays a role in protecting the cell against oxidative stress. Further, we propose that extracellular MCYST may act as a signaling molecule, stimulating MCYST production under conditions of iron limitation and enhancing the fitness of bloom populations. IMPORTANCE: Microcystin production in water supply reservoirs is a global public health problem. Understanding the ecophysiology of hepatotoxic cyanobacteria, including their responses to the presence of key micronutrient metals such as iron, is central to managing harmful blooms. To our knowledge, this was the first study to examine proteomic and physiological changes occurring in M. aeruginosa continuous cultures under conditions of iron limitation at different growth rates.


Assuntos
Ferro/farmacologia , Microcistinas/metabolismo , Microcystis/efeitos dos fármacos , Microcystis/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Disponibilidade Biológica , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação para Baixo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ferro/farmacocinética , Microcystis/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Proteoma , Regulação para Cima/efeitos dos fármacos
15.
BMC Genomics ; 16: 669, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26335778

RESUMO

BACKGROUND: Cyanobacteria are well known for the production of a range of secondary metabolites. Whilst recent genome sequencing projects has led to an increase in the number of publically available cyanobacterial genomes, the secondary metabolite potential of many of these organisms remains elusive. Our study focused on the 11 publically available Subsection V cyanobacterial genomes, together with the draft genomes of Westiella intricata UH strain HT-29-1 and Hapalosiphon welwitschii UH strain IC-52-3, for their genetic potential to produce secondary metabolites. The Subsection V cyanobacterial genomes analysed in this study are reported to produce a diverse range of natural products, including the hapalindole-family of compounds, microcystin, hapalosin, mycosporine-like amino acids and hydrocarbons. RESULTS: A putative gene cluster for the cyclic depsipeptide hapalosin, known to reverse P-glycoprotein multiple drug resistance, was identified within three Subsection V cyanobacterial genomes, including the producing cyanobacterium H. welwitschii UH strain IC-52-3. A number of orphan NRPS/PKS gene clusters and ribosomally-synthesised and post translationally-modified peptide gene clusters (including cyanobactin, microviridin and bacteriocin gene clusters) were identified. Furthermore, gene clusters encoding the biosynthesis of mycosporine-like amino acids, scytonemin, hydrocarbons and terpenes were also identified and compared. CONCLUSIONS: Genome mining has revealed the diversity, abundance and complex nature of the secondary metabolite potential of the Subsection V cyanobacteria. This bioinformatic study has identified novel biosynthetic enzymes which have not been associated with gene clusters of known classes of natural products, suggesting that these cyanobacteria potentially produce structurally novel secondary metabolites.


Assuntos
Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Cianobactérias/genética , Genoma Bacteriano , Família Multigênica , Sequência de Aminoácidos , Proteínas de Bactérias/química , Produtos Biológicos/química , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , Peptídeo Sintases/metabolismo , Metabolismo Secundário/genética , Terpenos/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(16): 6175-80, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22474352

RESUMO

Dendritic cells (DC) are antigen-presenting cells found in both lymphoid and nonlymphoid organs, including the brain (bDC) of Cd11c/eyfp transgenic C57BL/6 mice. Using an intranasal vesicular stomatitis virus infection, we demonstrated that EYFP(+) cells amass in areas associated with viral antigens, take on an activated morphology, and project their processes into infected neuronal tissue within the olfactory bulb. These bDC separated into three EYFP(+) CD45(+) CD11b(+) populations, all but one being able to functionally promote both T lymphocyte proliferation and T(H)1 cytokine production. One population was shown to emanate from the brain and a second population was peripherally derived. The third population was of indeterminate origin, being both radiosensitive and not replenished by donor bone marrow. Finally, each EYFP(+) population contained CD11b(+) CD103(+) subpopulations and could be distinguished in terms of CD115, Gr-1, and Ly-6C expression, highlighting mucosal and monocyte-derived DC lineages.


Assuntos
Encéfalo/imunologia , Células Dendríticas/imunologia , Encefalite Viral/imunologia , Bulbo Olfatório/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Encefalite Viral/genética , Encefalite Viral/metabolismo , Citometria de Fluxo , Cadeias alfa de Integrinas/imunologia , Cadeias alfa de Integrinas/metabolismo , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Bulbo Olfatório/metabolismo , Ovalbumina/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vírus da Estomatite Vesicular Indiana/imunologia
17.
J Proteome Res ; 13(3): 1474-84, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24460188

RESUMO

In Australia, saxitoxin production is restricted to the cyanobacterial species Anabaena circinalis and is strain-dependent. We aimed to characterize a saxitoxin-producing and nontoxic strain of A. circinalis at the proteomic level using iTRAQ. Seven proteins putatively involved in saxitoxin biosynthesis were identified within our iTRAQ experiment for the first time. The proteomic profile of the toxic A. circinalis was significantly different from the nontoxic strain, indicating that each is likely to inhabit a unique ecological niche. Under control growth conditions, the saxitoxin-producing A. circinalis displayed a higher abundance of photosynthetic, carbon fixation and nitrogen metabolic proteins. Differential abundance of these proteins suggests a higher intracellular C:N ratio and a higher concentration of intracellular 2-oxoglutarate in our toxic strain compared with the nontoxic strain. This may be a novel site for posttranslational regulation because saxitoxin biosynthesis putatively requires a 2-oxoglutarate-dependent dioxygenase. The nontoxic A. circinalis was more abundant in proteins, indicating cellular stress. Overall, our study has provided the first insight into fundamental differences between a toxic and nontoxic strain of A. circinalis, indicating that they are distinct ecotypes.


Assuntos
Anabaena/genética , Anabaena/patogenicidade , Proteínas de Bactérias/análise , Regulação Bacteriana da Expressão Gênica , Saxitoxina/biossíntese , Anabaena/classificação , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecótipo , Ácidos Cetoglutáricos/metabolismo , Espectrometria de Massas/métodos , Anotação de Sequência Molecular , Nitrogênio/metabolismo , Peptídeos/análise , Fotossíntese/genética , Filogenia , Proteômica , Coloração e Rotulagem/métodos , Virulência
18.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451250

RESUMO

Cycads are known to host symbiotic cyanobacteria, including Nostocales species, as well as other sympatric bacterial taxa within their specialized coralloid roots. Yet, it is unknown if these bacteria share a phylogenetic origin and/or common genomic functions that allow them to engage in facultative symbiosis with cycad roots. To address this, we obtained metagenomic sequences from 39 coralloid roots sampled from diverse cycad species and origins in Australia and Mexico. Culture-independent shotgun metagenomic sequencing was used to validate sub-community co-cultures as an efficient approach for functional and taxonomic analysis. Our metanalysis shows a host-independent microbiome core consisting of seven bacterial orders with high species diversity within the identified taxa. Moreover, we recovered 43 cyanobacterial metagenome-assembled genomes, and in addition to Nostoc spp., symbiotic cyanobacteria of the genus Aulosira were identified for the first time. Using this robust dataset, we used phylometagenomic analysis to reveal three monophyletic cyanobiont clades, two host-generalist and one cycad-specific that includes Aulosira spp. Although the symbiotic clades have independently arisen, they are enriched in certain functional genes, such as those related to secondary metabolism. Furthermore, the taxonomic composition of associated sympatric bacterial taxa remained constant. Our research quadruples the number of cycad cyanobiont genomes and provides a robust framework to decipher cyanobacterial symbioses, with the potential of improving our understanding of symbiotic communities. This study lays a solid foundation to harness cyanobionts for agriculture and bioprospection, and assist in conservation of critically endangered cycads.


Assuntos
Genômica , Simbiose , Filogenia , Austrália , Técnicas de Cocultura
19.
ISME Commun ; 4(1): ycae069, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38966402

RESUMO

Lichens are remarkable and classic examples of symbiotic organisms that have fascinated scientists for centuries. Yet, it has only been for a couple of decades that significant advances have focused on the diversity of their green algal and/or cyanobacterial photobionts. Cyanolichens, which contain cyanobacteria as their photosynthetic partner, include up to 10% of all known lichens and, as such, studies on their cyanobionts are much rarer compared to their green algal counterparts. For the unicellular cyanobionts, i.e. cyanobacteria that do not form filaments, these studies are even scarcer. Nonetheless, these currently include at least 10 different genera in the cosmopolitan lichen order Lichinales. An international consortium (International Network of CyanoBionts; INCb) will tackle this lack of knowledge. In this article, we discuss the status of current unicellular cyanobiont research, compare the taxonomic resolution of photobionts from cyanolichens with those of green algal lichens (chlorolichens), and give a roadmap of research on how to recondition the underestimated fraction of symbiotic unicellular cyanobacteria in lichens.

20.
Acta Neuropathol ; 124(5): 599-614, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22825593

RESUMO

Dendritic cells (DC) are the professional antigen-presenting cells of the immune system. In their quiescent and mature form, the presentation of self-antigens by DC leads to tolerance; whereas, antigen presentation by mature DC, after stimulation by pathogen-associated molecular patterns, leads to the onset of antigen-specific immunity. DC have been found in many of the major organs in mammals (e.g. skin, heart, lungs, intestines and spleen); while the brain has long been considered devoid of DC in the absence of neuroinflammation. Consequently, microglia, the resident immune cell of the brain, have been charged with many functional attributes commonly ascribed to DC. Recent evidence has challenged the notion that DC are either absent or minimal players in brain immune surveillance. This review will discuss the recent literature examining DC involvement within both the young and aged steady-state brain. We will also examine DC contributions during various forms of neuroinflammation resulting from neurodegenerative autoimmune disease, injury, and CNS infections. This review also touches upon DC trafficking between the central nervous system and peripheral immune compartments during viral infections, the new molecular technologies that could be employed to enhance our current understanding of brain DC ontogeny, and some potential therapeutic uses of DC within the CNS.


Assuntos
Encéfalo/imunologia , Células Dendríticas/patologia , Células Dendríticas/fisiologia , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Encéfalo/citologia , Encéfalo/patologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Macrófagos/patologia , Macrófagos/fisiologia , Microglia/patologia , Microglia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA