Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
BMC Immunol ; 25(1): 49, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061002

RESUMO

BACKGROUND: The systemic inflammatory syndrome called "cytokine storm" has been described in COVID-19 pathogenesis, contributing to disease severity. The analysis of cytokine and chemokine levels in the blood of 21 SARS-CoV-2 positive patients throughout the phases of the pandemic has been studied to understand immune response dysregulation and identify potential disease biomarkers for new treatments. The present work reports the cytokine and chemokine levels in sera from a small cohort of individuals primarily infected with SARS-CoV-2 during the first wave of the COVID-19 pandemic in Milan (Italy). RESULTS: Among the 27 cytokines and chemokines investigated, a significant higher expression of Interleukin-9 (IL-9), IP-10 (CXCL10), MCP-1 (CCL2) and RANTES (CCL-5) in infected patients compared to uninfected subjects was observed. When the change in cytokine/chemokine levels was monitored over time, from the hospitalization day to discharge, only IL-6 and IP-10 showed a significant decrease. Consistent with these findings, a significant negative correlation was observed between IP-10 and anti-Spike IgG antibodies in infected individuals. In contrast, IL-17 was positively correlated with the production of IgG against SARS-CoV-2. CONCLUSIONS: The cytokine storm and the modulation of cytokine levels by SARS-CoV-2 infection are hallmarks of COVID-19. The current global immunity profile largely stems from widespread vaccination campaigns and previous infection exposures. Consequently, the immunological features and dynamic cytokine profiles of non-vaccinated and primarily-infected subjects reported here provide novel insights into the inflammatory immune landscape in the context of SARS-CoV-2 infection, and offer valuable knowledge for addressing future viral infections and the development of novel treatments.


Assuntos
COVID-19 , Quimiocinas , Citocinas , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/sangue , COVID-19/epidemiologia , Itália/epidemiologia , SARS-CoV-2/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Citocinas/sangue , Idoso , Quimiocinas/sangue , Adulto , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Biomarcadores/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Pandemias
2.
Antimicrob Agents Chemother ; 68(7): e0014324, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38899927

RESUMO

In response to the spread of artemisinin (ART) resistance, ART-based hybrid drugs were developed, and their activity profile was characterized against drug-sensitive and drug-resistant Plasmodium falciparum parasites. Two hybrids were found to display parasite growth reduction, stage-specificity, speed of activity, additivity of activity in drug combinations, and stability in hepatic microsomes of similar levels to those displayed by dihydroartemisinin (DHA). Conversely, the rate of chemical homolysis of the peroxide bonds is slower in hybrids than in DHA. From a mechanistic perspective, heme plays a central role in the chemical homolysis of peroxide, inhibiting heme detoxification and disrupting parasite heme redox homeostasis. The hybrid exhibiting slow homolysis of peroxide bonds was more potent in reducing the viability of ART-resistant parasites in a ring-stage survival assay than the hybrid exhibiting fast homolysis. However, both hybrids showed limited activity against ART-induced quiescent parasites in the quiescent-stage survival assay. Our findings are consistent with previous results showing that slow homolysis of peroxide-containing drugs may retain activity against proliferating ART-resistant parasites. However, our data suggest that this property does not overcome the limited activity of peroxides in killing non-proliferating parasites in a quiescent state.


Assuntos
Antimaláricos , Artemisininas , Plasmodium falciparum , Artemisininas/farmacologia , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Humanos , Testes de Sensibilidade Parasitária , Animais , Peróxidos/farmacologia
3.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893578

RESUMO

BACKGROUND: The viral main protease (Mpro) of SARS-CoV-2 has been recently proposed as a key target to inhibit virus replication in the host. Therefore, molecules that can bind the catalytic site of Mpro could be considered as potential drug candidates in the treatment of SARS-CoV-2 infections. Here we proposed the application of a state-of-the-art analytical platform which combines metabolomics and protein structure analysis to fish-out potential active compounds deriving from a natural matrix, i.e., a blueberry extract. METHODS: The experiments focus on finding MS covalent inhibitors of Mpro that contain in their structure a catechol/pyrogallol moiety capable of binding to the nucleophilic amino acids of the enzyme's catalytic site. RESULTS: Among the potential candidates identified, the delphinidin-3-glucoside showed the most promising results. Its antiviral activity has been confirmed in vitro on Vero E6 cells infected with SARS-CoV-2, showing a dose-dependent inhibitory effect almost comparable to the known Mpro inhibitor baicalin. The interaction of delphinidin-3-glucoside with the Mpro pocket observed was also evaluated by computational studies. CONCLUSIONS: The HRMS analytical platform described proved to be effective in identifying compounds that covalently bind Mpro and are active in the inhibition of SARS-CoV-2 replication, such as delphinidin-3-glucoside.


Assuntos
Antocianinas , Antivirais , Mirtilos Azuis (Planta) , Proteases 3C de Coronavírus , Extratos Vegetais , Inibidores de Proteases , SARS-CoV-2 , Mirtilos Azuis (Planta)/química , Antocianinas/farmacologia , Antocianinas/química , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Células Vero , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , Humanos , Simulação de Acoplamento Molecular , COVID-19/virologia , Glucosídeos
4.
Chemistry ; 29(55): e202301642, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37427863

RESUMO

Malaria is the one of the deadliest infectious diseases worldwide. Chemically, quinolines are excellent ligands for metal coordination and are deployed as drugs for malaria treatment. There is a growing body of evidence indicating that metal complexes can be conjugated with antimalarial quinolines to be used as chemical tools to overcome the disadvantages of quinolines, improving their bioactive speciation, cellular distribution, and subsequently broadening the spectrum of activity to multiple stages of the complex Plasmodium life cycle. In this study, four novel complexes of ruthenium(II)- and gold(I)-containing amodiaquine (AQ) were synthesized, and a careful chemical characterization revealed the precise coordination site of AQ to the metals. Their speciation in solution was investigated, demonstrating the stability of the quinoline-metal bond. RuII - and AuI -AQ complexes were demonstrated to be potent and efficacious in inhibiting parasite growth in multiple stages of the Plasmodium life cycle as assayed in vitro and in vivo. These properties could be attributed to the ability of the metal-AQ complexes to reproduce the suppression of heme detoxification induced by AQ, while also inhibiting other processes in the parasite life cycle; this can be attributed to the action of the metallic species. Altogether, these findings indicate that metal coordination with antimalarial quinolines is a potential chemical tool for drug design and discovery in malaria and other infectious diseases susceptible to quinoline treatment.


Assuntos
Antimaláricos , Complexos de Coordenação , Malária , Plasmodium , Quinolinas , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Amodiaquina/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Malária/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Plasmodium falciparum
5.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985820

RESUMO

Lysozyme (E.C. 3.2.1.17), an about 14 kDa protein and pI 11, widely spread in nature, is present in humans mainly in milk, saliva, and intestinal mucus as a part of innate defense mechanisms. It is endowed with antimicrobial activity due to its action as an N-acetylmuramidase, cleaving the 1-4ß glycosidic linkage in the peptidoglycan layer of Gram-positive bacteria. This antimicrobial activity is exerted only against a limited number of Gram-negative bacteria. Different action mechanisms are proposed to explain its activity against Gram-negative bacteria, viruses, and fungi. The antiviral activity prompted the study of a possible application of lysozyme in the treatment of SARS-CoV-2 infections. Among the different sources of lysozyme, the chicken egg albumen was chosen, being the richest source of this protein (c-type lysozyme, 129 amino acids). Interestingly, the activity of lysozyme hydrochloride against SARS-CoV-2 was related to the heating (to about 100 °C) of this molecule. A chemical-physical characterization was required to investigate the possible modifications of native lysozyme hydrochloride by heat treatment. The FTIR analysis of the two preparations of lysozyme hydrochloride showed appreciable differences in the secondary structure of the two protein chains. HPLC and NMR analyses, as well as the enzymatic activity determination, did not show significant modifications.


Assuntos
COVID-19 , Muramidase , Humanos , Muramidase/química , Temperatura Alta , SARS-CoV-2/metabolismo , Bactérias Gram-Negativas/metabolismo , Antivirais/farmacologia
6.
Antimicrob Agents Chemother ; 66(1): e0149821, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34723630

RESUMO

Malaria accounts for millions of cases and thousands of deaths every year. In the absence of an effective vaccine, drugs are still the most important tool in the fight against the disease. Plasmodium parasites developed resistance to all classes of known antimalarial drugs. Thus, the search for antimalarial drugs with novel mechanisms of action is compelling. The human GTPase Rac1 plays a role in parasite invasion of the host cell in many intracellular pathogens. Also, in Plasmodium falciparum, the involvement of Rac1 during both the invasion process and parasite intracellular development was suggested. The aim of this work is to test a panel of Rac1 inhibitors as potential antimalarial drugs. Fourteen commercially available or newly synthesized inhibitors of Rac1 were tested for antimalarial activity. Among these, EHop-016 was the most effective against P. falciparum in vitro, with nanomolar 50% inhibitory concentrations (IC50s) (138.8 ± 16.0 nM on the chloroquine-sensitive D10 strain and 321.5 ± 28.5 nM on the chloroquine-resistant W2 strain) and a selectivity index of 37.8. EHop-016 did not inhibit parasite invasion of red blood cells but affected parasite growth inside them. Among the tested Rac1 inhibitors, EHop-016 showed promising activity that raises attention to this class of molecules as potential antimalarials and deserves further investigation.


Assuntos
Antimaláricos , GTP Fosfo-Hidrolases , Malária Falciparum , Proteínas rac1 de Ligação ao GTP , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , GTP Fosfo-Hidrolases/antagonistas & inibidores , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
7.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409421

RESUMO

In the novel pandemic of Coronavirus Disease 2019, high levels of pro-inflammatory cytokines lead to endothelial activation and dysfunction, promoting a pro-coagulative state, thrombotic events, and microvasculature injuries. The aim of the present work was to investigate the effect of SARS-CoV-2 on pro-inflammatory cytokines, tissue factor, and chemokine release, with Human Microvascular Endothelial Cells (HMEC-1). ACE2 receptor expression was evaluated by western blot analysis. SARS-CoV-2 infection was assessed by one-step RT-PCR until 7 days post-infection (p.i.), and by Transmission Electron Microscopy (TEM). IL-6, TNF-α, IL-8, IFN-α, and hTF mRNA expression levels were detected by RT-PCR, while cytokine release was evaluated by ELISA. HMEC-1 expressed ACE2 receptor and SARS-CoV-2 infection showed a constant viral load. TEM analysis showed virions localized in the cytoplasm. Expression of IL-6 at 24 h and IFN-α mRNA at 24 h and 48 h p.i. was higher in infected than uninfected HMEC-1 (p < 0.05). IL-6 levels were significantly higher in supernatants from infected HMEC-1 (p < 0.001) at 24 h, 48 h, and 72 h p.i., while IL-8 levels were significantly lower at 24 h p.i. (p < 0.001). These data indicate that in vitro microvascular endothelial cells are susceptible to SARS-CoV-2 infection but slightly contribute to viral amplification. However, SARS-CoV-2 infection might trigger the increase of pro-inflammatory mediators.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2
8.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056779

RESUMO

The potential of natural and synthetic chalcones as therapeutic leads against different pathological conditions has been investigated for several years, and this class of compounds emerged as a privileged chemotype due to its interesting anti-inflammatory, antimicrobial, antiviral, and anticancer properties. The objective of our study was to contribute to the investigation of this class of natural products as anti-leishmanial agents. We aimed at investigating the structure-activity relationships of the natural chalcone lophirone E, characterized by the presence of benzofuran B-ring, and analogues on anti-leishmania activity. Here we describe an effective synthetic strategy for the preparation of the natural chalcone lophirone E and its application to the synthesis of a small set of chalcones bearing different substitution patterns at both the A and heterocyclic B rings. The resulting compounds were investigated for their activity against Leishmania infantum promastigotes disclosing derivatives 1 and 28a,b as those endowed with the most interesting activities (IC50 = 15.3, 27.2, 15.9 µM, respectively). The synthetic approaches here described and the early SAR investigations highlighted the potential of this class of compounds as antiparasitic hits, making this study worthy of further investigation.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Benzofuranos/química , Biflavonoides/síntese química , Chalconas/síntese química , Indóis/química , Biflavonoides/química , Chalconas/química , Fenômenos Químicos , Técnicas de Química Sintética , Humanos , Leishmania infantum , Estrutura Molecular , Relação Estrutura-Atividade
9.
J Med Virol ; 93(11): 6333-6339, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33547809

RESUMO

Colon cancer is the third cause of cancer death in the developed countries. Some environmental factors are involved in its pathogenesis, including viral infections. The possible involvement of human polyomaviruses (HPyVs) in colon cancer pathogenesis has been previously reported, leading to inconsistent conclusions. Clinical specimens were collected from 125 colon cancer patients. Specifically, 110 tumor tissues, 55 negative surgical margins, and 39 peripheral blood samples were analyzed for the presence of six HPyVs: JC polyomavirus (JCPyV), BK polyomavirus (BKPyV), Merkel cell PyV (MCPyV), HPyV -6, -7, and -9 by means of DNA isolation and subsequent duplex Real Time quantitative polymerase chain reaction. HPyVs genome was detected in 33/204 samples (16.2%): the significant higher positivity was found in tumor tissues (26/110, 23.6%), followed by negative surgical margins (3/55, 5.5%, p < .05), and peripheral blood mononuclear cells (PBMCs) (4/39; 10.3%). HPyVs load was statistically higher only in the tumor tissues compared to negative surgical margins (p < .05). Specifically, MCPyV was detected in 19.1% (21/110) of tumor tissues, 3.6% (2/55) of negative surgical margins (p < .05), and 7.7% (3/39) of PBMCs; HPyV-6 in 2.7% (3/110) of tumor tissues, and 1.8% (1/55) of negative surgical margins; one tumor tissue (1/110, 0.9%) and one PBMCs sample (1/39, 2.6%) were positive for BKPyV; JCPyV was present in 0.9% (1/110) of tumor tissues. HPyV-7 and 9 were not detected in any sample. High prevalence and load of MCPyV genome in the tumor tissues might be indicative of a relevant rather than bystander role of the virus in the colon tumorigenesis.


Assuntos
Neoplasias do Colo/virologia , DNA Viral/isolamento & purificação , Genoma Viral , Infecções por Polyomavirus/virologia , Polyomavirus/genética , Polyomavirus/isolamento & purificação , Carga Viral , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/classificação , DNA Viral/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polyomavirus/classificação , Manejo de Espécimes , Infecções Tumorais por Vírus/virologia
10.
Malar J ; 20(1): 81, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568138

RESUMO

BACKGROUND: The innate immune response against various life cycle stages of the malaria parasite plays an important role in protection against the disease and regulation of its severity. Phagocytosis of asexual erythrocytic stages is well documented, but little and contrasting results are available about phagocytic clearance of sexual stages, the gametocytes, which are responsible for the transmission of the parasites from humans to mosquitoes. Similarly, activation of host macrophages by gametocytes has not yet been carefully addressed. METHODS: Phagocytosis of early or late Plasmodium falciparum gametocytes was evaluated through methanol fixed cytospin preparations of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated for 2 h with P. falciparum and stained with Giemsa, and it was confirmed through a standardized bioluminescent method using the transgenic P. falciparum 3D7elo1-pfs16-CBG99 strain. Activation was evaluated by measuring nitric oxide or cytokine levels in the supernatants of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated with early or late gametocytes. RESULTS: The results showed that murine bone marrow-derived macrophages can phagocytose both early and late gametocytes, but only the latter were able to induce the production of inflammatory mediators, specifically nitric oxide and the cytokines tumour necrosis factor and macrophage inflammatory protein 2. CONCLUSIONS: These results support the hypothesis that developing gametocytes interact in different ways with innate immune cells of the host. Moreover, the present study proposes that early and late gametocytes act differently as targets for innate immune responses.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Plasmodium falciparum/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
11.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445543

RESUMO

The current SARS-CoV-2 pandemic causes serious public health, social, and economic issues all over the globe. Surface transmission has been claimed as a possible SARS-CoV-2 infection route, especially in heavy contaminated environmental surfaces, including hospitals and crowded public places. Herein, we studied the deactivation of SARS-CoV-2 on photoactive AgNPs@TiO2 coated on industrial ceramic tiles under dark, UVA, and LED light irradiations. SARS-CoV-2 inactivation is effective under any light/dark conditions. The presence of AgNPs has an important key to limit the survival of SARS-CoV-2 in the dark; moreover, there is a synergistic action when TiO2 is decorated with Ag to enhance the virus photocatalytic inactivation even under LED. The radical oxidation was confirmed as the the central mechanism behind SARS-CoV-2 damage/inactivation by ESR analysis under LED light. Therefore, photoactive AgNPs@TiO2 ceramic tiles could be exploited to fight surface infections, especially during viral severe pandemics.


Assuntos
Cerâmica/química , Nanopartículas Metálicas/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/efeitos da radiação , Titânio/química , Antivirais/farmacologia , COVID-19/virologia , Humanos , Luz , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Pandemias , Tamanho da Partícula , SARS-CoV-2/metabolismo , Propriedades de Superfície , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
12.
Med Microbiol Immunol ; 209(2): 189-199, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32040616

RESUMO

Human endogenous retroviruses (HERV) are remnants of exogenous retroviral infections, representing 8% of the human genome. Their regulation is based on the DNA methylation of promoters, the long terminal repeats (LTRs). Transcripts from HERV have been associated with cancers, but reports concerning HERV expression in colorectal cancer remain sporadic. Sixty-three patients with advanced stages of colorectal cancer were enrolled in this study. The expressions of HERV env gene, and HERV-H, -K, -R and -P LTRs and Alu, LINE-1 methylation levels, were investigated in the tumor, normal adjacent tissues, and, where possible, blood and plasmatic extracellular vesicles (EVs). Associations among HERV env expression, methylation status and clinical characteristics were evaluated. No differences were observed in HERV env gene expression levels among the clinical specimens, while Alu, LINE-1, HERV-H and -K LTRs were demethylated in the tumor compared to the normal adjacent tissues (p < 0.05).The HERV env gene was expressed in the EVs at of 54% (-H), 38% (-K), 31% (-R) patients. Association was not found between HERV env expression and LTR methylation, but significant higher expression of HERV-P and -R env was found in tumor tissues arising from the right colon. Our findings do not demonstrate significant overexpression of the studied HERV in colorectal cancer, but their association with tumor localization and specificity of the changes in DNA methylation of retroelements are shown. HERV sequences were packaged in the EVs and might be transferred from one cell to another.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA , Retrovirus Endógenos/genética , Produtos do Gene env/metabolismo , Sequências Repetidas Terminais , Idoso , Idoso de 80 Anos ou mais , Elementos Alu , Neoplasias Colorretais/virologia , Retrovirus Endógenos/metabolismo , Vesículas Extracelulares/química , Feminino , Regulação Neoplásica da Expressão Gênica , Produtos do Gene env/sangue , Produtos do Gene env/classificação , Genes env , Humanos , Elementos Nucleotídeos Longos e Dispersos , Masculino , Regiões Promotoras Genéticas
13.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752056

RESUMO

Artemisinin combination therapy (ACT) is recommended by the World Health Organization (WHO) as first line treatment for uncomplicated malaria both in adults and children. During pregnancy, ACT is considered safe only in the second and third trimester, since animal studies have demonstrated that artemisinin derivatives can cause foetal death and congenital malformation within a narrow time window in early embryogenesis. During this period, artemisinin derivatives induce defective embryonic erythropoiesis and vasculogenesis/angiogenesis in experimental models. However, clinical data on the safety profile of ACT in pregnant women have not shown an increased risk of miscarriage, stillbirth, or congenital malformation, nor low birth weight, associated with exposure to artemisinins in the first trimester. Although further studies are needed, the evidence collected up to now is prompting the WHO towards a change in the guidelines for the treatment of uncomplicated malaria, allowing the use of ACT also in the first trimester of pregnancy.


Assuntos
Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Feminino , Guias como Assunto , Hematopoese/efeitos dos fármacos , Humanos , Malária/tratamento farmacológico , Malária/patologia , Gravidez , Primeiro Trimestre da Gravidez
14.
Parasitology ; 146(3): 399-406, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30269694

RESUMO

Haemozoin is a by-product of haemoglobin digestion by intraerythrocytic malaria parasites, which induces immunologic responses on different tissues, including endothelial cells. In the present paper, the incubation of human microvascular endothelial cells with haemozoin significantly inhibited MTT reduction, a measure of cytotoxicity, without increasing the release of cytoplasmic lactate dehydrogenase. Moreover, haemozoin did not induce apoptosis or cell cycle arrest nor decreased the number of live cells, suggesting that cells viability itself was not affected and that the inhibition of MTT reduction was only apparent and probably due to accelerated MTT-formazan exocytosis. After 30 min of MTT addition, a significant increase in the % of cells exocytosing MTT formazan crystals was observed in haemozoin-treated cells compared with control cells. Such an effect was partially reversed by the addition of genistein, an inhibitor of MTT-formazan exocytosis. The rapid release of CXCL-8, a preformed chemokine contained in Weibel-Palade bodies, confirmed that haemozoin induces a perturbation of the intracellular endothelial trafficking, including the exocytosis of MTT-formazan containing vesicles. The haem moiety of haemozoin is responsible for the observed effect. Moreover, this work underlines that MTT assay should not be used to measure cytotoxicity induced by haemozoin and other methods should be preferred.


Assuntos
Células Endoteliais/fisiologia , Exocitose/fisiologia , Formazans/química , Hemeproteínas/metabolismo , Pigmentos Biológicos/metabolismo , Plasmodium falciparum/fisiologia , Sais de Tetrazólio/química , Humanos
15.
Bioorg Chem ; 93: 103321, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585261

RESUMO

Bioassay-guided fractionation of the organic extract obtained from stem barks of the African plant Lophira lanceolata has led to the isolation of seven biflavonoids, including the new α'-chlorolophirone E (5) and 5'-chlorolophirone D (6). Among the isolated compounds, the bichalcone lophirone E was identified as a potent gametocytocidal agent with an IC50 value in the nanomolar range and negligible cytotoxicity (selectivity index = 570). Lophirone E proved to be about 100 times more active against P. falciparum stage V gametocytes than on asexual blood stages, thus exhibiting a unique stage-specific activity profile. The isolation of structural analogues allowed to draw preliminary structure-activity relationships, identifying the critical positions on the chemical scaffold of lophirone E.


Assuntos
Antimaláricos/química , Ochnaceae/química , Casca de Planta/química , Caules de Planta/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Linhagem Celular , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Análise Espectral/métodos , Relação Estrutura-Atividade
16.
Bioorg Chem ; 89: 103020, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31185392

RESUMO

Despite recent advancements in its control, malaria is still a deadly parasitic disease killing millions of people each year. Progresses in combating the infection have been made by using the so-called artemisinin combination therapies (ACTs). Natural and synthetic peroxides are an important class of antimalarials. Here we describe a new series of peroxides synthesized through a new elaboration of the scaffold of bicyclic-fused/bridged synthetic endoperoxides previously developed by us. These peroxides are produced by a straightforward synthetic protocol and are characterized by submicromolar potency when tested against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. To investigate their mode of action, the biomimetic reaction of the representative compound 6w with Fe(II) was studied by EPR and the reaction products were characterized by NMR. Rationalization of the observed structure-activity relationship studies was performed by molecular docking. Taken together, our data robustly support the hypothesized mode of activation of peroxides 6a-cc and led to the definition of the key structural requirements responsible for the antiplasmodial potency. These data will pave the way in future to the rational design of novel optimized antimalarials suitable for in vivo investigation.


Assuntos
Antimaláricos/farmacologia , Materiais Biomiméticos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Compostos Férricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Relação Dose-Resposta a Droga , Compostos Férricos/síntese química , Compostos Férricos/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
17.
Artigo em Inglês | MEDLINE | ID: mdl-29866868

RESUMO

The emergence of resistance toward artemisinin combination therapies (ACTs) by the malaria parasite Plasmodium falciparum has the potential to severely compromise malaria control. Therefore, the development of new artemisinins in combination with new drugs that impart activities toward both intraerythrocytic proliferative asexual and transmissible gametocyte stages, in particular, those of resistant parasites, is urgently required. We define artemisinins as oxidant drugs through their ability to oxidize reduced flavin cofactors of flavin disulfide reductases critical for maintaining redox homeostasis in the malaria parasite. Here we compare the activities of 10-amino artemisinin derivatives toward the asexual and gametocyte stages of P. falciparum parasites. Of these, artemisone and artemiside inhibited asexual and gametocyte stages, particularly stage V gametocytes, in the low-nanomolar range. Further, treatment of both early and late gametocyte stages with artemisone or artemiside combined with the pro-oxidant redox partner methylene blue displayed notable synergism. These data suggest that modulation of redox homeostasis is likely an important druggable process, particularly in gametocytes, and this finding thereby enhances the prospect of using combinations of oxidant and redox drugs for malaria control.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sinergismo Farmacológico , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467575

RESUMO

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Assuntos
Antimaláricos/uso terapêutico , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Malária/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequenas
19.
Malar J ; 17(1): 456, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522493

RESUMO

BACKGROUND: Plasmodium falciparum haemozoin, a detoxification product of digested haemoglobin from infected erythrocytes, is released into the bloodstream upon schizont rupture and accumulates in leukocytes. High levels of haemozoin correlate with disease severity. Some studies have shown that concentrations of the substrate of inducible nitric oxide synthase (iNOS), L-arginine, as well as nitric oxide are low in patients infected with P. falciparum malaria. The present study investigates, in vitro, the role of P. falciparum haemozoin on nitric oxide production, iNOS expression in macrophages, and the possible interaction between L-arginine and haemozoin. METHODS: Plasmodium falciparum haemozoin was obtained from in vitro cultures through magnetic isolation. Phagocytosis of haemozoin by immortalized bone marrow derived macrophages was detected by confocal reflection combined with fluorescence microscopy. Nitrite concentrations in the supernatants was evaluated by Griess assay as a standard indication of nitric oxide production, while iNOS expression was detected on cell extracts by western blotting. Detection of L-arginine in haemozoin-treated or untreated media was achieved by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Haemozoin synergizes in vitro with interferon-gamma to produce nitric oxide. However, when mouse macrophages were stimulated with haemozoin, a proportional increase of nitric oxide was observed up to 25 µM of haemozoin, followed by a decrease with doses up to 100 µM, when nitric oxide release was completely abrogated. This was not due to reactive oxygen species production, nor to an effect on iNOS activity. Interestingly, when at 24 h, haemozoin-treated macrophages were washed and incubated in fresh medium for further 24 h, the nitric oxide production was restored in a dose-response manner. Similar results were seen when L-arginine-enriched media was used in the stimulation. Moreover, muramyldipeptide, a strong nitric oxide inducer, was unable to activate macrophages to release nitric oxide in the presence of haemozoin-treated medium. By LC-MS/MS a complete depletion of L-arginine was observed in this haemozoin-treated, conditioned medium. CONCLUSIONS: It is proposed that haemozoin interacts with L-arginine reducing its availability for iNOS, and thus decreasing nitric oxide production. The clinical (or pathological) implications of these results are discussed.


Assuntos
Arginina/metabolismo , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Plasmodium falciparum/química , Animais , Arginina/química , Linhagem Celular , Células Cultivadas , Hemeproteínas/química , Humanos , Interferon gama/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo
20.
J Antimicrob Chemother ; 71(5): 1148-58, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26888912

RESUMO

OBJECTIVES: As most available antimalarial drugs are ineffective against the Plasmodium falciparum transmission stages, new drugs against the parasite's gametocytes are urgently needed to combat malaria globally. The unique biology of gametocytes requires assays that need to be specific, to faithfully monitor anti-gametocyte activity, and to be easy to perform, cheap and scalable to high-throughput screening (HTS). METHODS: We developed an HTS cell-based assay with P. falciparum gametocytes specifically expressing a potent luciferase. To confirm HTS hit activity for several parasite genotypes, the luciferase assay and the gametocyte lactate dehydrogenase (LDH) assay, usable on any parasite isolate, were compared by screening antimalarial drugs and determining IC50 values of anti-gametocyte hits from the 'Malaria Box' against early- and late-stage gametocytes. RESULTS: Comparison of the two assays, conducted on the early and on late gametocyte stages, revealed an excellent correlation (R(2) > 0.9) for the IC50 values obtained by the respective readouts. Differences in susceptibility to drugs and compounds between the two parasite developmental stages were consistently measured in both assays. CONCLUSIONS: This work indicates that the luciferase and gametocyte LDH assays are interchangeable and that their specific advantages can be exploited to design an HTS pipeline leading to new transmission-blocking compounds. Results from these assays consistently defined a gametocyte chemical susceptibility profile, relevant to the planning of future drug discovery strategies.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Plasmodium falciparum/efeitos dos fármacos , Técnicas Citológicas/métodos , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , L-Lactato Desidrogenase/análise , Luciferases/análise , Plasmodium falciparum/enzimologia , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA