Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 89(1): 73-89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423075

RESUMO

Glass microbeads are frequently used in analog physical modeling to simulate weak detachment zones but have been neglected in models of thrust wedges. Microbeads differ from quartz sand in grain shape and in low angle of internal friction. In this study, we compared the structural characteristics of microbeads and sand wedges. To obtain a better picture of their mechanical behavior, we determined the physical and frictional properties of microbeads using polarizing and scanning electron microscopy and ring-shear tests, respectively. We built shortening experiments with different basal frictions and measured the thickness, slope and length of the wedges and also the fault spacings. All the microbeads experiments revealed wedge geometries that were consistent with previous studies that have been performed with sand. However, the deformation features in the microbeads shortened over low to intermediate basal frictions were slightly different. Microbeads produced different fault geometries than sand as well as a different grain flow. In addition, they produced slip on minor faults, which was associated with distributed deformation and gave the microbeads wedges the appearance of disharmonic folds. We concluded that the glass microbeads may be used to simulate relatively competent rocks, like carbonates, which may be characterized by small-scale deformation features.

2.
An Acad Bras Cienc ; 87(1): 51-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25673472

RESUMO

We compare the deformation patterns produced by sand and a sand mica mixture (14:1 ratio of sand to mica by weight) while simulating basin fill in extension and inversion models to analyze the potential of the sand mica mixture for applications that require a strong elasto-frictional plastic analogue material in physical models. Sand and the sand mica mixture have nearly equal angles of internal friction, but the sand mica mixture deforms at a significantly lower level of peak shear stress. In extension, the sand mica mixture basin fill experiments show fewer normal faults. During inversion, the most striking difference between the sand and the sand mica mixture basin fill experiments is related to the internal deformation in fault-propagation folds, which increases with an increase in the basal friction. We conclude that our strongly elasto-frictional plastic sand mica mixture may be used to simulate folds in experiments that focus on mild inversion in the brittle crust.

3.
An. acad. bras. ciênc ; 89(1): 73-89, Jan,-Mar. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886621

RESUMO

ABSTRACT Glass microbeads are frequently used in analog physical modeling to simulate weak detachment zones but have been neglected in models of thrust wedges. Microbeads differ from quartz sand in grain shape and in low angle of internal friction. In this study, we compared the structural characteristics of microbeads and sand wedges. To obtain a better picture of their mechanical behavior, we determined the physical and frictional properties of microbeads using polarizing and scanning electron microscopy and ring-shear tests, respectively. We built shortening experiments with different basal frictions and measured the thickness, slope and length of the wedges and also the fault spacings. All the microbeads experiments revealed wedge geometries that were consistent with previous studies that have been performed with sand. However, the deformation features in the microbeads shortened over low to intermediate basal frictions were slightly different. Microbeads produced different fault geometries than sand as well as a different grain flow. In addition, they produced slip on minor faults, which was associated with distributed deformation and gave the microbeads wedges the appearance of disharmonic folds. We concluded that the glass microbeads may be used to simulate relatively competent rocks, like carbonates, which may be characterized by small-scale deformation features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA