Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(12): e202319414, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38295149

RESUMO

Efficient plastic recycling processes are crucial for the production of value-added products or intermediates. Here, we present a multicatalytic route that allows the degradation of nitrile-butadiene rubber, cross-metathesis of the formed oligomers, and polymerization of the resulting dicarboxylic acids with bio-based diols, providing direct access to unsaturated polyesters. This one-pot approach combines the use of commercially available catalysts that are active and selective under mild conditions to synthesize renewable copolymers without the need to isolate intermediates.

2.
Dalton Trans ; 52(23): 8077-8091, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37232395

RESUMO

The synthesis of two chiral bulky alkoxide pro-ligands, 1-adamantyl-tert-butylphenylmethanol HOCAdtBuPh and 1-adamantylmethylphenylmethanol HOCAdMePh, is reported and their coordination chemistry with magnesium(II) is described and compared with the coordination chemistry of the previously reported achiral bulky alkoxide pro-ligand HOCtBu2Ph. Treatment of n-butyl-sec-butylmagnesium with two equivalents of the racemic mixture of HOCAdtBuPh led selectively to the formation of the mononuclear bis(alkoxide) complex Mg(OCAdtBuPh)2(THF)2. 1H NMR spectroscopy and X-ray crystallography suggested the selective formation of the C2-symmetric homochiral diastereomer Mg(OCRAdtBuPh)2(THF)2/Mg(OCSAdtBuPh)2(THF)2. In contrast, the less sterically encumbered HOCAdMePh led to the formation of dinuclear products indicating only partial alkyl group substitution. The mononuclear Mg(OCAdtBuPh)2(THF)2 complex was tested as a catalyst in different reactions for the synthesis of polyesters. In the ROP of lactide, Mg(OCAdtBuPh)2(THF)2 demonstrated very high activity, higher than that shown by Mg(OCtBu2Ph)2(THF)2, although with moderate control degrees. Both Mg(OCAdtBuPh)2(THF)2 and Mg(OCtBu2Ph)2(THF)2 were found to be very effective in the polymerization of macrolactones such as ω-pentadecalactone (PDL) and ω-6-hexadecenlactone (HDL) also under mild reaction conditions that are generally prohibitive for these substrates. The same catalysts demonstrated efficient ring-opening copolymerization (ROCOP) of propylene oxide (PO) and maleic anhydride (MA) to produce poly(propylene maleate).

3.
Polymers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433038

RESUMO

The synthesis of novel block copolymers, namely poly(limonene-phthalate)-block-poly(pentadecalactone) and poly(limonene-phthalate)-block-poly(pentadecalactone) is here described. To achieve this synthesis, a bimetallic aluminum based complex (1) was used as catalyst in the combination of two distinct processes: the ring-opening polymerization (ROP) of macrolactones such as ω-pentadecalactone (PDL) and ω-6-hexadecenlactone (HDL) and the ring-opening copolymerization (ROCOP) of limonene oxide (LO) and phthalic anhydride (PA). The synthesis of di-block polyesters was performed in a one-pot procedure, where the semi-aromatic polyester block was firstly formed by ROCOP of LO and PA, followed by the polyethylene like portion produced by ROP of macrolactones (PDL or HDL). The obtained di-block semiaromatic polyesters were characterized by NMR and GPC. The structural organization was analyzed through XRD. Thermal properties were evaluated using differential thermal analysis (DSC) and thermogravimetric measurements (TGA) either in air or in nitrogen atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA