Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Microencapsul ; 31(2): 137-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23862723

RESUMO

Polysulfenamides (PSN), with a SN linkage (RSNR2) along the polymer backbone, are a new class of biodegradable and biocompatible polymers. These polymers were unknown prior to 2012 when their synthesis and medicinally relevant properties were reported. The aim of this study was to develop microparticles as a controlled drug delivery system using polysulfenamide as the matrix material. The microparticles were prepared by a water-in-oil-in-water double-emulsion solvent-evaporation method. For producing drug-loaded particles, FITC-dextran was used as a model hydrophilic compound. At the optimal formulation conditions, the external morphology of the PSN microparticles was examined by scanning electron microscopy to show the formation of smooth-surfaced spherical particles with low polydispersity. The microparticles had a net negative surface charge (-23 mV) as analyzed by the zetasizer. The drug encapsulation efficiency of the particles and the drug loading were found to be dependent on the drug molecular weight, amount of FITC-dextran used in fabricating FITC-dextran-loaded microparticles, concentration of PSN and surfactant, and volume of the internal and external water phases. FITC-dextran was found to be distributed throughout the PSN microparticles and was released in an initial burst followed by more continuous release over time. Confocal laser scanning microscopy was used to qualitatively observe the cellular uptake of PSN microparticles and indicated localization of the particles in both the cytoplasm and the nucleus.


Assuntos
Polímeros/química , Sulfamerazina/química , Cápsulas/química , Cápsulas/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Emulsões/química , Emulsões/farmacologia , Células HEK293 , Humanos , Polímeros/farmacologia , Sulfamerazina/farmacologia
2.
Nat Nanotechnol ; 12(6): 523-529, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28436961

RESUMO

The Center for Drug Evaluation and Research (CDER) within the US Food and Drug Administration (FDA) is tracking the use of nanotechnology in drug products by building and interrogating a technical profile of products containing nanomaterials submitted to CDER. In this Analysis, data from more than 350 products show an increase in the submissions of drug products containing nanomaterials over the last two decades. Of these, 65% are investigational new drugs, 17% are new drug applications and 18% are abbreviated new drug applications, with the largest class of products being liposomal formulations intended for cancer treatments. Approximately 80% of products have average particle sizes of 300 nm or lower. This analysis identifies several trends in the development of drug products containing nanomaterials, including the relative rate of approvals of these products, and provides a comprehensive overview on the landscape of nanotechnology application in medicine.


Assuntos
Aprovação de Drogas , Desenho de Fármacos , Nanoestruturas/uso terapêutico , Preparações Farmacêuticas , Humanos , Lipossomos , Tamanho da Partícula , Estados Unidos , United States Food and Drug Administration
3.
Curr Pharm Biotechnol ; 16(7): 655-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25934975

RESUMO

Gene therapy is a promising strategy to deliver growth factors of interest locally in a sustained fashion and has the potential to overcome barriers to using recombinant protein therapy such as sustainability and cost. Recent studies demonstrate the safety and efficacy of non-viral delivery of plasmid DNA (pDNA) encoding a single growth factor to enhance bone healing. This pilot study is aimed at testing a non-viral gene delivery system that can deliver two different plasmids encoding two different growth factors. Polyethylenimine (PEI), a cationic polymer, was utilized as a gene delivery vector and collagen scaffold was used as a carrier to deliver the PEI-pDNA complexes encoding platelet derived growth factor B (PDGF-B) and/or vascular endothelial growth factor (VEGF). Calvarial defects in rats were implanted with scaffolds containing PEI-pPDGF-B complexes, PEI-pVEGF complexes or containing both PEIpPDGF- B and PEI-pVEGF complexes in a 1:1 ratio of plasmids. The results indicated that bone regeneration as measured using micro-CT and histological assessments was inferior in groups treated with PEI-(pPDGF-B + pVEGF) complexes, compared to defects treated with PEI-pPDGF-B complexes. This pilot study that explores the feasibility and efficacy of combinatorial non-viral gene delivery system for bone regeneration appears to provide a rationale for investigation of sequential delivery of growth factors at specific time points during the healing phases and this will be explored further in future studies.


Assuntos
Regeneração Óssea/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Plasmídeos/genética , Polietilenoimina , Crânio/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , DNA/administração & dosagem , DNA/genética , Técnicas de Transferência de Genes , Projetos Piloto , Plasmídeos/administração & dosagem , Polietilenoimina/administração & dosagem , Ratos , Crânio/patologia , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
4.
Biomaterials ; 35(2): 737-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161167

RESUMO

Gene therapy using non-viral vectors that are safe and efficient in transfecting target cells is an effective approach to overcome the shortcomings of protein delivery of growth factors. The objective of this study was to develop and test a non-viral gene delivery system for bone regeneration utilizing a collagen scaffold to deliver polyethylenimine (PEI)-plasmid DNA (pDNA) [encoding platelet derived growth factor-B (PDGF-B)] complexes. The PEI-pPDGF-B complexes were fabricated at amine (N) to phosphate (P) ratio of 10 and characterized for size, surface charge, and in vitro cytotoxicity and transfection efficacy in human bone marrow stromal cells (BMSCs). The influence of the complex-loaded collagen scaffold on cellular attachment and recruitment was evaluated in vitro using microscopy techniques. The in vivo regenerative capacity of the gene delivery system was assessed in 5 mm diameter critical-sized calvarial defects in Fisher 344 rats. The complexes were ~100 nm in size with a positive surface charge. Complexes prepared at an N/P ratio of 10 displayed low cytotoxicity as assessed by a cell viability assay. Confocal microscopy revealed significant proliferation of BMSCs on complex-loaded collagen scaffolds compared to empty scaffolds. In vivo studies showed significantly higher new bone volume/total volume (BV/TV) % in calvarial defects treated with the complex-activated scaffolds following 4 weeks of implantation (14- and 44-fold higher) when compared to empty defects or empty scaffolds, respectively. Together, these findings suggest that non-viral PDGF-B gene-activated scaffolds are effective for bone regeneration and are an attractive gene delivery system with significant potential for clinical translation.


Assuntos
Regeneração Óssea/genética , Técnicas de Transferência de Genes , Fator de Crescimento Derivado de Plaquetas/genética , Alicerces Teciduais/química , Animais , Proliferação de Células , Sobrevivência Celular , Colágeno/química , DNA , Expressão Gênica , Terapia Genética , Vetores Genéticos , Humanos , Masculino , Células-Tronco Mesenquimais , Microscopia Confocal , Plasmídeos/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Polietilenoimina , Ratos , Ratos Endogâmicos F344 , Transfecção
5.
Macromolecules ; 45(2): 688-697, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22347726

RESUMO

This paper reports the first examples of poly(diaminosulfide)s that were synthesized by the reaction of a sulfur transfer reagent and several secondary diamines. The diaminosulfide group has the general structure of R(2)N-S-NR(2) and, although it has been used in the synthesis of small molecules, it has never been utilized in the synthesis of macromolecules until this report. A series of poly(diaminosulfide)s were synthesized at elevated temperatures, and the molecular weights of the polymers were as high as 12,400 g mol(-1) with conversions for the polymerization reaction up to 99%. The rate constants for the transamination reactions that lead to the polymers were measured in several solvents to provide an understanding the reaction conditions necessary to polymerize the monomers. The degradation of diaminosulfides were studied in D(2)O, C(6)D(6), CD(3)OD, CDCl(3), and DMSO-d(6)/D(2)O to demonstrate that they were very stable in organic solvents but degraded within hours under aqueous conditions. These results clearly demonstrated that diaminosulfides are very stable in organic solvents under ambient conditions. Poly(diaminosulfide)s have sufficient stabilities to be useful for many applications. The ability of these polymers to function as drug delivery vehicles were studied by the fabrication of nanoparticles of a water-insoluble poly(diaminosulfide) with a dye. The microparticles were readily absorbed into human embryonic 293 cells and possessed no measureable toxicity towards these same cells.

6.
Macromolecules ; 45(5): 2292-2300, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22454554

RESUMO

Although numerous small molecules have been synthesized with sulfenamide bonds (R(2)N-SR), this is the first report of the synthesis of polysulfenamides. These polymers are readily synthesized at room temperature using secondary diamines and dithiosuccinimides. The dithiosuccinimides were readily synthesized in one step by the reaction of dithiols such as HS(CH(2))(6)SH with N-chlorosuccinimide. The resulting dithiosuccinimides were either recrystallized or readily purified by chromatography on silica gel and required no special handling. The conversions of polymerization ranged from 95 to 98%, and the molecular weights of the polymer reached as high as 6,300 g mol(-1). The sulfenamide bond was very stable in organic solvents, and no degradation was observed under atmospheric conditions in C(6)D(6) for 30 days. In contrast, the sulfenamide bond readily decomposed in less than 12 h in D(2)O. Polysulfenamides were fabricated into micron-sized particles loaded with dye and endocytosed into JAWSII immature dendritic and HEK293 cells. Polysulfenamides represent a new class of polymers that are readily synthesized, stable in aprotic solvents, and readily degrade in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA