Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 168(3): 88, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786950

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage C.37 (Lambda) has spread rapidly in Peru and other Latin American countries. However, most studies in Peru have focused on Lima, the capital city, without knowing the dynamics of the spread of the variant in other departments. Cusco, Peru, is one of the most popular departments in the country for tourists, so the introduction of new variants of SARS-CoV-2 might occur despite closure of the borders. Therefore, in this work, we analyzed the variants circulating in Cusco. The aim of this work was to better understand the distribution of SARS-CoV-2 lineages circulating in Cusco and to characterize the genomes of these strains. To this end, 46 SARS-CoV-2 genomes from vaccinated and unvaccinated patients were sequenced in the first half of 2021. The genomes were analyzed using phylogenetic and natural selection methods. Phylogenetic trees from Cusco showed dominance of the Lambda lineage over the variants of concern (VOCs), and there was no clustering of variants by district. Natural selection analysis revealed mutations, mainly in the spike protein, at positions 75, 246, 247, 707, 769, and 1020. In addition, we found that unvaccinated patients accumulated more new mutations than did vaccinated patients, and these included the F101Y mutation in ORF7a, E419A in NSP3, a deletion in S (21,618-22,501), and a deletion in ORF3a (25,437-26,122).


Assuntos
COVID-19 , SARS-CoV-2 , Seleção Genética , Humanos , COVID-19/epidemiologia , COVID-19/virologia , Mutação , Peru/epidemiologia , Filogenia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
2.
Environ Microbiol ; 23(7): 3435-3459, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666586

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent xenobiotic compounds, with high toxicity effects. Mycoremediation with halophilic Aspergillus sydowii was used for their removal from a hypersaline medium (1 M NaCl). A. sydowii metabolized PAHs as sole carbon sources, resulting in the removal of up to 90% for both PAHs [benzo [a] pyrene (BaP) and phenanthrene (Phe)] after 10 days. Elimination of Phe and BaP was almost exclusively due to biotransformation and not adsorption by dead mycelium and did not correlate with the activity of lignin modifying enzymes (LME). Transcriptomes of A. sydowii grown on PAHs, or on glucose as control, both at hypersaline conditions, revealed 170 upregulated and 76 downregulated genes. Upregulated genes were related to starvation, cell wall remodelling, degradation and metabolism of xenobiotics, DNA/RNA metabolism, energy generation, signalling and general stress responses. Changes of LME expression levels were not detected, while the chloroperoxidase gene, possibly related to detoxification processes in fungi, was strongly upregulated. We propose that two parallel metabolic pathways (mitochondrial and cytosolic) are involved in degradation and detoxification of PAHs in A. sydowii resulting in intracellular oxidation of PAHs. To the best of our knowledge, this is the most comprehensive transcriptomic analysis on fungal degradation of PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Transcriptoma , Aspergillus/genética , Biodegradação Ambiental , Perfilação da Expressão Gênica , Transcriptoma/genética
3.
Front Microbiol ; 14: 1216008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692398

RESUMO

Purpose: The purpose of this study was to highlight the clinical and molecular features of 13 Raoultella ornithinolytica strains isolated from clinical environments in Ecuador, and to perform comparative genomics with previously published genomes of Raoultella spp. As Raoultella is primarily found in environmental, clinical settings, we focused our work on identifying mechanisms of resistance that can provide this bacterium an advantage to establish and persist in hospital environments. Methods: We analyzed 13 strains of Raoultella ornithinolytica isolated from patients with healthcare associated infections (HAI) in three hospitals in Quito and one in Santo Domingo de Los Tsáchilas, Ecuador, between November 2017 and April 2018. These isolates were subjected to phenotypic antimicrobial susceptibility testing, end-point polymerase chain reaction (PCR) to detect the presence of carbapenemases and whole-genome sequencing. Results: Polymerase chain reaction revealed that seven isolates were positive isolates for blaOXA-48 and one for blaKPC-2 gene. Of the seven strains that presented the blaOXA-48 gene, six harbored it on an IncFII plasmid, one was inserted into the bacterial chromosome. The blaKPC gene was detected in an IncM2/IncR plasmid. From the bioinformatics analysis, nine genomes had the gene blaOXA-48, originating from Ecuador. Moreover, all R. ornithinolytica strains contained the ORN-1 gene, which confers resistance for ß-lactams, such as penicillins and cephalosporins. Comparative genome analysis of the strains showed that the pangenome of R. ornithinolytica is considered an open pangenome, with 27.77% of core genes, which could be explained by the fact that the antibiotic resistance genes in the ancestral reconstruction are relatively new, suggesting that this genome is constantly incorporating new genes. Conclusion: These results reveal the genome plasticity of R. ornithinolytica, particularly in acquiring antibiotic-resistance genes. The genomic surveillance and infectious control of these uncommon species are important since they may contribute to the burden of antimicrobial resistance and human health.

4.
Microbiologyopen ; 10(2): e1183, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33970536

RESUMO

In recent years, the fermented milk product kefir has been intensively studied because of its health benefits. Here, we evaluated the microbial consortia of two kefir samples, from Escarcega, Campeche, and Campeche (México). We considered a functional comparison between both samples, including fungal and bacterial inhibition; second, we applied shotgun metagenomics to assess the structure and functional diversity of the communities of microorganisms. These two samples exhibited antagonisms against bacterial and fungal pathogens. Bioactive polyketides and nonribosomal peptides were identified by LC-HRMS analysis. We also observed a high bacterial diversity and an abundance of Actinobacteria in both kefir samples, and a greater abundance of Saccharomyces species in kefir of Escarcega than in the Campeche kefir. When the prophage compositions were evaluated, the Campeche sample showed a higher diversity of prophage sequences. In Escarcega, we observed a prevalence of prophage families that infect Enterobacteria and Lactobacillus. The sequences associated with secondary metabolites, such as plipastatin, fengycin, and bacillaene, and also bacteriocins like helveticin and zoocin, were also found in different proportions, with greater diversity in the Escarcega sample. The analyses described in this work open the opportunity to understand the microbial diversity in kefir samples from two distant localities.


Assuntos
Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Kefir/microbiologia , Metagenoma , Animais , Bactérias/classificação , Biodiversidade , Produtos Fermentados do Leite/microbiologia , DNA Bacteriano , DNA Fúngico , Fermentação , Microbiologia de Alimentos , Fungos/classificação , Metagenômica/métodos , México , Microbiota , Leite/microbiologia , Peptídeos/farmacologia , Policetídeos/farmacologia , Prófagos/genética , Metabolismo Secundário
5.
Microorganisms ; 8(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137872

RESUMO

Terrestrial thermal springs are widely distributed globally, and these springs harbor a broad diversity of organisms of biotechnological interest. In Mexico, few studies exploring this kind of environment have been described. In this work, we explore the microbial community in Chignahuapan hot springs, which provides clues to understand these ecosystems' diversity. We assessed the diversity of the microorganism communities in a hot spring environment with a metagenomic shotgun approach. Besides identifying similarities and differences with other ecosystems, we achieved a systematic comparison against 11 metagenomic samples from diverse localities. The Chignahuapan hot springs show a particular prevalence of sulfur-oxidizing bacteria from the genera Rhodococcus, Thermomonas, Thiomonas, Acinetobacter, Sulfurovum, and Bacillus, highlighting those that are different from other recovered bacterial populations in circumneutral hot springs environments around the world. The co-occurrence analysis of the bacteria and viruses in these environments revealed that within the Rhodococcus, Thiomonas, Thermonas, and Bacillus genera, the Chignahuapan samples have specific species of bacteria with a particular abundance, such as Rhodococcus erytropholis. The viruses in the circumneutral hot springs present bacteriophages within the order Caudovirales (Siphoviridae, Myoviridae, and Podoviridae), but the family of Herelleviridae was the most abundant in Chignahuapan samples. Furthermore, viral auxiliary metabolic genes were identified, many of which contribute mainly to the metabolism of cofactors and vitamins as well as carbohydrate metabolism. Nevertheless, the viruses and bacteria present in the circumneutral environments contribute to the sulfur cycle. This work represents an exhaustive characterization of a community structure in samples collected from hot springs in Mexico and opens opportunities to identify organisms of biotechnological interest.

6.
Microorganisms ; 8(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204571

RESUMO

Antibiotic resistance is on the rise, leading to an increase in morbidity and mortality due to infectious diseases. Klebsiella pneumoniae is a Gram-negative bacterium that causes bronchopneumonia, abscesses, urinary tract infection, osteomyelitis, and a wide variety of infections. The ubiquity of this microorganism confounds with the great increase in antibiotic resistance and have bred great concern worldwide. K. pneumoniae sequence type (ST) 307 is a widespread emerging clone associated with hospital-acquired infections, although sporadic community infections have also been reported. The aim of our study is to describe the first case of Klebsiella pneumoniae (ST) 307 harboring the blaOXA-48-like gene in Ecuador. We characterized a new plasmid that carry OXA-48 and could be the source of future outbreaks. The strain was recovered from a patient with cancer previously admitted in a Ukrainian hospital, suggesting that this mechanism of resistance could be imported. These findings highlight the importance of programs based on active molecular surveillance for the intercontinental spread of multidrug-resistant microorganisms with emergent carbapenemases.

7.
Mar Genomics ; 46: 16-28, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30857856

RESUMO

Ten publicly available metagenomic data sets from hydrothermal vents were analyzed to determine the taxonomic structure of the viral communities present, as well as their potential metabolic functions. The type of natural selection on two auxiliary metabolic genes was also analyzed. The structure of the virome in the hydrothermal vents was quite different in comparison with the viruses present in sediments, with specific populations being present in greater abundance in the plume samples when compared with the sediment samples. ssDNA genomes such as Circoviridae and Microviridae were predominantly present in the sediment samples, with Caudovirales which are dsDNA being present in the vent samples. Genes potentially encoding enzymes that participate in carbon, nitrogen and sulfur metabolic pathways were found in greater abundance, than those involved in the oxygen cycle, in the hydrothermal vents. Functional profiling of the viromes, resulted in the discovery of genes encoding proteins involved in bacteriophage capsids, DNA synthesis, nucleotide synthesis, DNA repair, as well as viral auxiliary metabolic genes such as cytitidyltransferase and ribonucleotide reductase. These auxiliary metabolic genes participate in the synthesis of phospholipids and nucleotides respectively and are likely to contribute to enhancing the fitness of their bacterial hosts within the hydrothermal vent communities. Finally, evolutionary analysis suggested that these auxiliary metabolic genes are highly conserved and evolve under purifying selection, and are thus maintained in their genome.


Assuntos
Extremófilos/virologia , Genes Virais/genética , Fontes Hidrotermais/virologia , Vírus/classificação , Vírus/genética , Variação Genética , Metagenoma/genética , Proteínas Virais/genética
8.
Microorganisms ; 7(12)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783517

RESUMO

Halites, which are typically found in various Atacama locations, are evaporitic rocks that are considered as micro-scaled salterns. Both structural and functional metagenomic analyses of halite nodules were performed. Structural analyses indicated that the halite microbiota is mainly composed of NaCl-adapted microorganisms. In addition, halites appear to harbor a limited diversity of fungal families together with a biodiverse collection of protozoa. Functional analysis indicated that the halite microbiome possesses the capacity to make an extensive contribution to carbon, nitrogen, and sulfur cycles, but possess a limited capacity to fix nitrogen. The halite metagenome also contains a vast repertory of carbohydrate active enzymes (CAZY) with glycosyl transferases being the most abundant class present, followed by glycosyl hydrolases (GH). Amylases were also present in high abundance, with GH also being identified. Thus, the halite microbiota is a potential useful source of novel enzymes that could have biotechnological applicability. This is the first metagenomic report of fungi and protozoa as endolithobionts of halite nodules, as well as the first attempt to describe the repertoire of CAZY in this community. In addition, we present a comprehensive functional metagenomic analysis of the metabolic capacities of the halite microbiota, providing evidence for the first time on the sulfur cycle in Atacama halites.

9.
Front Microbiol ; 10: 2403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749771

RESUMO

Viruses are the most abundant biological entities in the biosphere, and have the ability to infect Bacteria, Archaea, and Eukaryotes. The virome is estimated to be at least ten times more abundant than the microbiome with 107 viruses per milliliter and 109 viral particles per gram in marine waters and sediments or soils, respectively. Viruses represent a largely unexplored genetic diversity, having an important role in the genomic plasticity of their hosts. Moreover, they also play a significant role in the dynamics of microbial populations. In recent years, metagenomic approaches have gained increasing popularity in the study of environmental viromes, offering the possibility of extending our knowledge related to both virus diversity and their functional characterization. Extreme environments represent an interesting source of both microbiota and their virome due to their particular physicochemical conditions, such as very high or very low temperatures and >1 atm hydrostatic pressures, among others. Despite the fact that some progress has been made in our understanding of the ecology of the microbiota in these habitats, few metagenomic studies have described the viromes present in extreme ecosystems. Thus, limited advances have been made in our understanding of the virus community structure in extremophilic ecosystems, as well as in their biotechnological potential. In this review, we critically analyze recent progress in metagenomic based approaches to explore the viromes in extreme environments and we discuss the potential for new discoveries, as well as methodological challenges and perspectives.

10.
Genes (Basel) ; 10(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694288

RESUMO

Intermediate-salinity environments are distributed around the world. Here, we present a snapshot characterization of two Peruvian thalassohaline environments at high altitude, Maras and Acos, which provide an excellent opportunity to increase our understanding of these ecosystems. The main goal of this study was to assess the structure and functional diversity of the communities of microorganisms in an intermediate-salinity environment, and we used a metagenomic shotgun approach for this analysis. These Andean hypersaline systems exhibited high bacterial diversity and abundance of the phyla Proteobacteria, Bacteroidetes, Balneolaeota, and Actinobacteria; in contrast, Archaea from the phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota were identified in low abundance. Acos harbored a more diverse prokaryotic community and a higher number of unique species compared with Maras. In addition, we obtained the draft genomes of two bacteria, Halomonas elongata and Idiomarina loihiensis, as well as the viral genomes of Enterobacteria lambda-like phage and Halomonas elongata-like phage and 27 partial novel viral halophilic genomes. The functional metagenome annotation showed a high abundance of sequences associated with detoxification, DNA repair, cell wall and capsule formation, and nucleotide metabolism; sequences for these functions were overexpressed mainly in bacteria and also in some archaea and viruses. Thus, their metabolic profiles afford a decrease in oxidative stress as well as the assimilation of nitrogen, a critical energy source for survival. Our work represents the first microbial characterization of a community structure in samples collected from Peruvian hypersaline systems.


Assuntos
Metagenômica/métodos , Microbiota/genética , Microbiota/fisiologia , Tolerância ao Sal/genética , Actinobacteria/genética , Altitude , Archaea/genética , Bactérias/genética , Bacteroidetes/genética , Biodiversidade , Euryarchaeota/genética , Peru , Filogenia , Proteobactérias/genética , RNA Ribossômico 16S/genética , Salinidade , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA