Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 133: 236-249, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29309904

RESUMO

Cyclooxygenase-2 (COX-2) derived-prostanoids participate in the altered vascular function and mechanical properties in cardiovascular diseases. We investigated whether regulator of calcineurin 1 (Rcan1) participates in vascular contractility and stiffness through the regulation of COX-2. For this, wild type (Rcan1+/+) and Rcan1-deficient (Rcan1-/-) mice untreated or treated with the COX-2 inhibitor rofecoxib were used. Vascular function and structure were analysed by myography. COX-2 and phospo-p65 expression were studied by western blotting and immunohistochemistry and TXA2 production by ELISA. We found that Rcan1 deficiency increases COX-2 and IL-6 expression and NF-κB activation in arteries and vascular smooth muscle cells (VSMC). Adenoviral-mediated re-expression of Rcan1.4 in Rcan1-/- VSMC normalized COX-2 expression. Phenylephrine-induced vasoconstrictor responses were greater in aorta from Rcan1-/- compared to Rcan1+/+ mice. This increased response were diminished by etoricoxib, furegrelate, SQ 29548, cyclosporine A and parthenolide, inhibitors of COX-2, TXA2 synthase, TP receptors, calcineurin and NF-κB, respectively. Endothelial removal and NOS inhibition increased phenylephrine responses only in Rcan1+/+ mice. TXA2 levels were greater in Rcan1-/- mice. In small mesenteric arteries, vascular function and structure were similar in both groups of mice; however, vessels from Rcan1-/- mice displayed an increase in vascular stiffness that was diminished by rofecoxib. In conclusion, our results suggest that Rcan1 might act as endogenous negative modulator of COX-2 expression and activity by inhibiting calcineurin and NF-kB pathways to maintain normal contractility and vascular stiffness in aorta and small mesenteric arteries, respectively. Our results uncover a new role for Rcan1 in vascular contractility and mechanical properties.


Assuntos
Aorta Torácica/fisiologia , Ciclo-Oxigenase 2/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Artérias Mesentéricas/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/fisiologia , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia
2.
Biomed Pharmacother ; 174: 116564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608525

RESUMO

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Assuntos
Ácidos Docosa-Hexaenoicos , Hipertensão , Camundongos Endogâmicos C57BL , Obesidade , Remodelação Vascular , Animais , Masculino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Obesidade/complicações , Obesidade/metabolismo , Remodelação Vascular/efeitos dos fármacos , Camundongos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Dieta Hiperlipídica/efeitos adversos , Angiotensina II , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Camundongos Obesos , Vasoconstrição/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Animais de Doenças
3.
Hypertension ; 80(1): 84-96, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36337053

RESUMO

BACKGROUND: Resolution of inflammation is orchestrated by specialized proresolving lipid mediators (SPMs), and this would be impaired in some cardiovascular diseases. Among SPMs, resolvins (Rv) have beneficial effects in cardiovascular pathologies, but little is known about their effect on cardiovascular damage in hypertension. METHODS: Aorta, small mesenteric arteries, heart, and peritoneal macrophages were taken from C57BL/6J mice, infused or not with angiotensin II (AngII; 1.44 mg/kg/day, 14 days) in presence or absence of resolvin D2 (RvD2) (100 ng/mice, every second day) starting 1 day before or 7 days after AngII infusion. RESULTS: Enzymes and receptors involved in SPMs biosynthesis and signaling were increased in aorta or heart from AngII-infused mice. We also observed a differential regulation of SPMs in heart from these mice. Preventive treatment with RvD2 partially avoided AngII-induced hypertension and protected the heart and large and small vessels against functional and structural alterations induced by AngII. RvD2 increased the availability of vasoprotective factors, modified SPMs profile, decreased cardiovascular fibrosis, and increased the infiltration of pro-resolving macrophages. When administered in hypertensive animals with established cardiovascular damage, RvD2 partially improved cardiovascular function and structure, decreased fibrosis, reduced the infiltration of neutrophils, and shifted macrophage phenotype toward a pro-resolving phenotype. CONCLUSIONS: There is a disbalance between proinflammatory and resolution mediators in hypertension. RvD2 protects cardiovascular function and structure when administered before and after the development of hypertension by modulating vascular factors, fibrosis and inflammation. Activating resolution mechanisms by treatment with RvD2 may represent a novel therapeutic strategy for the treatment of hypertensive cardiovascular disease.


Assuntos
Angiotensina II , Hipertensão , Camundongos , Animais , Camundongos Endogâmicos C57BL , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA