Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905000

RESUMO

Parallel robots are being increasingly used as a fundamental component of lower-limb rehabilitation systems. During rehabilitation therapies, the parallel robot must interact with the patient, which raises several challenges to the control system: (1) The weight supported by the robot can vary from patient to patient, and even for the same patient, making standard model-based controllers unsuitable for those tasks since they rely on constant dynamic models and parameters. (2) The identification techniques usually consider the estimation of all dynamic parameters, bringing about challenges concerning robustness and complexity. This paper proposes the design and experimental validation of a model-based controller comprising a proportional-derivative controller with gravity compensation applied to a 4-DOF parallel robot for knee rehabilitation, where the gravitational forces are expressed in terms of relevant dynamic parameters. The identification of such parameters is possible by means of least squares methods. The proposed controller has been experimentally validated, holding the error stable following significant payload changes in terms of the weight of the patient's leg. This novel controller allows us to perform both identification and control simultaneously and is easy to tune. Moreover, its parameters have an intuitive interpretation, contrary to a conventional adaptive controller. The performance of a conventional adaptive controller and the proposed one are compared experimentally.

2.
J Biomech Eng ; 138(5): 051009, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26974715

RESUMO

Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.


Assuntos
Cabeça/fisiologia , Movimento , Modelagem Computacional Específica para o Paciente , Robótica , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Análise de Regressão
3.
Spat Spatiotemporal Epidemiol ; 43: 100532, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36460458

RESUMO

We propose two different mathematical models to study the effect of immigration on the COVID-19 pandemic. The first model does not consider immigration, whereas the second one does. Both mathematical models consider five different subpopulations: susceptible, exposed, infected, asymptomatic carriers, and recovered. We find the basic reproduction number R0 using the next-generation matrix method for the mathematical model without immigration. This threshold parameter is paramount because it allows us to characterize the evolution of the disease and identify what parameters substantially affect the COVID-19 pandemic outcome. We focus on the Venezuelan scenario, where immigration and emigration have been important over recent years, particularly during the pandemic. We show that the estimation of the transmission rates of the SARS-CoV-2 are affected when the immigration of infected people is considered. This has an important consequence from a public health perspective because if the basic reproduction number is less than unity, we can expect that the SARS-CoV-2 would disappear. Thus, if the basic reproduction number is slightly above one, we can predict that some mild non-pharmaceutical interventions would be enough to decrease the number of infected people. The results show that the dynamics of the spread of SARS-CoV-2 through the population must consider immigration to obtain better insight into the outcomes and create awareness in the population regarding the population flow.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Emigração e Imigração , Pandemias , Venezuela/epidemiologia , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA