Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 647, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943066

RESUMO

BACKGROUND: At a global scale, the SARS-CoV-2 virus did not remain in its initial genotype for a long period of time, with the first global reports of variants of concern (VOCs) in late 2020. Subsequently, genome sequencing has become an indispensable tool for characterizing the ongoing pandemic, particularly for typing SARS-CoV-2 samples obtained from patients or environmental surveillance. For such SARS-CoV-2 typing, various in vitro and in silico workflows exist, yet to date, no systematic cross-platform validation has been reported. RESULTS: In this work, we present the first comprehensive cross-platform evaluation and validation of in silico SARS-CoV-2 typing workflows. The evaluation relies on a dataset of 54 patient-derived samples sequenced with several different in vitro approaches on all relevant state-of-the-art sequencing platforms. Moreover, we present UnCoVar, a robust, production-grade reproducible SARS-CoV-2 typing workflow that outperforms all other tested approaches in terms of precision and recall. CONCLUSIONS: In many ways, the SARS-CoV-2 pandemic has accelerated the development of techniques and analytical approaches. We believe that this can serve as a blueprint for dealing with future pandemics. Accordingly, UnCoVar is easily generalizable towards other viral pathogens and future pandemics. The fully automated workflow assembles virus genomes from patient samples, identifies existing lineages, and provides high-resolution insights into individual mutations. UnCoVar includes extensive quality control and automatically generates interactive visual reports. UnCoVar is implemented as a Snakemake workflow. The open-source code is available under a BSD 2-clause license at github.com/IKIM-Essen/uncovar.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Fluxo de Trabalho , SARS-CoV-2/genética , Humanos , COVID-19/virologia , COVID-19/epidemiologia , Software , Reprodutibilidade dos Testes
2.
GigaByte ; 2024: gigabyte132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364224

RESUMO

Background: Next-generation sequencing for microbial communities has become a standard technique. However, the computational analysis remains resource-intensive. With declining costs and growing adoption of sequencing-based methods in many fields, validated, fully automated, reproducible and flexible pipelines are increasingly essential in various scientific fields. Results: We present RiboSnake, a validated, automated, reproducible QIIME2-based pipeline implemented in Snakemake for analysing 16S rRNA gene amplicon sequencing data. RiboSnake includes pre-packaged validated parameter sets optimized for different sample types, from environmental samples to patient data. The configuration packages can be easily adapted and shared, requiring minimal user input. Conclusion: RiboSnake is a new alternative for researchers employing 16S rRNA gene amplicon sequencing and looking for a customizable and user-friendly pipeline for microbiome analyses with in vitro validated settings. By automating the analysis with validated parameters for diverse sample types, RiboSnake enhances existing methods significantly. The workflow repository can be found on GitHub (https://github.com/IKIM-Essen/RiboSnake).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA