Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Haematologica ; 106(4): 1086-1096, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538149

RESUMO

Pathogen reduction (PR) technologies for blood components have been established to reduce the residual risk of known and emerging infectious agents. THERAFLEX UVPlatelets, a novel UVC light-based PR technology for platelet concentrates, works without photoactive substances. This randomized, controlled, double-blind, multicenter, noninferiority trial was designed to compare the efficacy and safety of UVC-treated platelets to that of untreated platelets in thrombocytopenic patients with hematologic-oncologic diseases. Primary objective was to determine non-inferiority of UVC-treated platelets, assessed by the 1-hour corrected count increment (CCI) in up to eight per-protocol platelet transfusion episodes. Analysis of the 171 eligible patients showed that the defined non-inferiority margin of 30% of UVC-treated platelets was narrowly missed as the mean differences in 1-hour CCI between standard platelets versus UVC-treated platelets for intention-to-treat and perprotocol analyses were 18.2% (95% confidence interval [CI]: 6.4%; 30.1) and 18.7% (95% CI: 6.3%; 31.1%), respectively. In comparison to the control, the UVC group had a 19.2% lower mean 24-hour CCI and was treated with an about 25% higher number of platelet units, but the average number of days to next platelet transfusion did not differ significantly between both treatment groups. The frequency of low-grade adverse events was slightly higher in the UVC group and the frequencies of refractoriness to platelet transfusion, platelet alloimmunization, severe bleeding events, and red blood cell transfusions were comparable between groups. Our study suggests that transfusion of pathogen-reduced platelets produced with the UVC technology is safe but non-inferiority was not demonstrated. (The German Clinical Trials Register number: DRKS00011156).


Assuntos
Doenças Hematológicas , Trombocitopenia , Plaquetas , Hemorragia , Humanos , Transfusão de Plaquetas , Trombocitopenia/etiologia , Trombocitopenia/terapia
2.
Transfusion ; 58(3): 758-765, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282743

RESUMO

BACKGROUND: Several ultraviolet (UV) light-based pathogen inactivation (PI) technologies for platelet (PLT) products have been developed or are under development. Upon implementation of PI technologies, quality control measures are required to ensure consistent efficiency of the treatment process. Previous reports showed that amotosalen/UVA and riboflavin/UV-based PI technologies induce modifications of the PLT-derived mitochondrial DNA (mtDNA) that can be detected by polymerase chain reaction (PCR) inhibition assays. In this study, we sought to establish a PCR inhibition assay to document the impact of ultraviolet C (UVC) treatment with the THERAFLEX UV-Platelets system on the mitochondrial genome in PLT concentrates (PCs). STUDY DESIGN AND METHODS: A multiplex real-time PCR inhibition assay with simultaneous short-amplicon (143 bp) and long-amplicon (794 bp) amplification was developed to detect mtDNA modifications in PLTs after UVC treatment. Assay performance was tested in UVC-treated and untreated, plasma-reduced pooled PCs, and apheresis PCs and challenged using PCs manufactured for a clinical trial under routine-like conditions. RESULTS: UVC illumination of PLTs resulted in dose-dependent inhibition of mtDNA amplification for the larger amplicon. Amplification of the shorter amplicon was not affected by UVC treatment. Evaluation of 283 blinded apheresis and pooled PLT samples from routine-like PC production resulted in prediction of UVC treatment status with 100% accuracy. CONCLUSION: The proposed dual-amplicon size real-time mtDNA PCR assay effectively detects nucleic acid damage induced by UVC illumination of PLTs and could be useful as an informative indicator of PI quality of the THERAFLEX UV-Platelets system.


Assuntos
Plaquetas , Patógenos Transmitidos pelo Sangue , DNA Mitocondrial/genética , Desinfecção/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Raios Ultravioleta , Feminino , Humanos , Masculino , Controle de Qualidade
3.
Br J Haematol ; 176(5): 814-821, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27991657

RESUMO

Determining blood group antigens by serological methods may be unreliable in certain situations, such as in patients after chronic or massive transfusion. Red cell genotyping offers a complementary approach, but current methods may take much longer than conventional serological typing, limiting their utility in urgent situations. To narrow this gap, we devised a rapid method using direct polymerase chain reaction (PCR) amplification while avoiding the DNA extraction step. DNA was amplified by PCR directly from plasma or serum of blood donors followed by a melting curve analysis in a capillary rapid-cycle PCR assay. We evaluated the single nucleotide polymorphisms underlying the clinically relevant Fya , Fyb , Jka and Jkb antigens, with our analysis being completed within 40 min of receiving a plasma or serum sample. The positive predictive value was 100% and the negative predictive value at least 84%. Direct PCR with melting point analysis allowed faster red cell genotyping to predict blood group antigens than any previous molecular method. Our assay may be used as a screening tool with subsequent confirmatory testing, within the limitations of the false-negative rate. With fast turnaround times, the rapid-cycle PCR assay may eventually be developed and applied to red cell genotyping in the hospital setting.


Assuntos
Antígenos de Grupos Sanguíneos/sangue , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Doadores de Sangue , Tipagem e Reações Cruzadas Sanguíneas , Genótipo , Humanos , Plasma/imunologia , Polimorfismo de Nucleotídeo Único , Fatores de Tempo , Temperatura de Transição
5.
Transfusion ; 49(9): 1803-11, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19453979

RESUMO

BACKGROUND: More than 170 weak or partial RHD alleles are currently known. A similar heterogeneity of RHCE alleles may be anticipated, but a large-scale systematic analysis of the molecular bases of altered C, c, E, and e antigenicity in European blood donors was lacking. STUDY DESIGN AND METHODS: Between November 2004 and October 2006, samples collected from 567,105 blood donors in the northwest of Germany were surveyed for weakened and/or discrepant serologic reaction patterns of the C, c, E, or e antigens in automated testing. Samples from 187 donors with systematic typing problems were further investigated by manual typing and in 122 donors by DNA typing. The polymorphisms determining C, c, E, and e, as well as three repeatedly found substitutions, M167K, G96S, and L115R, were tested by PCR-SSP. Further analysis consisted of sequencing of the exons of RHCE. In addition, 13 referred samples were analyzed. RESULTS: RHcE(M167K) known as E variant I was the most frequent allele, found in 70 of 122 analyzed donors. Among 13 referred samples, C typing problems predominated. Overall, 34 different underlying alleles were detected, 23 of which were new. Molecular causes included single-amino-acid substitutions, gene conversions, multiple dispersed amino acid substitutions, protein extensions, and in-frame amino acid deletions. CONCLUSION: In addition to RHcE(M167K), a large number of different alleles are underlying CcEe typing problems. Molecular mechanisms parallel those found in RHD. Elucidation of the molecular bases of variant antigens is important to improve serologic and molecular typing methods.


Assuntos
Alelos , Doadores de Sangue/estatística & dados numéricos , Tipagem e Reações Cruzadas Sanguíneas/métodos , Sistema do Grupo Sanguíneo Rh-Hr/genética , Alemanha , Humanos , Mutação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA