Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(35): 10528-10537, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36607115

RESUMO

Doppler asymmetric spatial heterodyne (DASH) interferometry is a novel concept for observing atmospheric winds. This paper discusses a numerical model for the simulation of fringe patterns and a methodology to correct fringe images for extracting Doppler information from ground-based DASH measurements. Based on the propagation of optical waves, the fringe pattern was modeled considering different angular deviations and optical aberrations. A dislocation between two gratings can introduce an additional spatial modulation associated with the diffraction order, which was seen in laboratory measurements. A phase correction is proposed to remove phase differences between different row interferograms, which is the premise for calculating the average interferogram to improve the signal-to-noise ratio. Laboratory tests, simulation results, and Doppler velocity measurements indicate that a matrix determined in the laboratory can be applied to correct interferograms obtained from ground-based DASH measurements.

2.
Sensors (Basel) ; 22(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36081105

RESUMO

Guided acoustic waves are commonly used in domestic water meters to measure the flow rate. The accuracy of this measurement method is affected by factors such as variations in temperature and limescale deposition inside of the pipe. In this work, a new approach using signals from different sound propagation paths is used to determine these quantities and allow for subsequent compensation. This method evaluates the different propagation times of guided Lamb waves in flow measurement applications. A finite element method-based model is used to identify the calibration curves for the device under test. The simulated dependencies on temperature and layer thickness are validated by experimental data. Finally, a test on simulated data with varying temperatures and limescale depositions proves that this method can be used to separate both effects. Based on these values, a flow measurement correction scheme can be derived that provides an improved resolution of guided acoustic wave-based flow meters.


Assuntos
Acústica , Ultrassom , Temperatura Corporal , Som , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA