RESUMO
As a major sink of anthropogenic heat and carbon, the Southern Ocean experienced pronounced warming with increasing extreme temperature events over the past decades. Mesoscale eddies that strongly influence the uptake, redistribution, and storage of heat in the ocean are expected to play important roles in these changes, yet observational evidence remains limited. Here, we employ a comprehensive analysis of over 500,000 historical hydrographic profile measurements combined with satellite-based eddy observations to show enhanced thermal eddy imprints in the Southern Ocean. Our observations reveal that anticyclonic (cyclonic) eddies are responsible for nearly half of the subsurface high (low)-temperature extremes detected, although only 10% of the profiles are located in eddy interiors. Over the past decade (2006 to 2019), both mean and extreme temperature anomalies within eddies in the Antarctic Circumpolar Current increased significantly, promoting the rise in subsurface ocean temperature variability. This enhanced role of eddies is likely a result of enhanced eddy pumping due to the increase in eddy intensity and ocean stratification caused by ocean warming. Our analysis underscores the crucial role of eddies in amplifying ocean temperature variability and extremes, with their effects expected to be even more pronounced as global warming persists.
RESUMO
The glycosaminoglycan hyaluronan (HA) plays an important role in tumor progression. However, its biological and clinical significance in papillary thyroid cancer (PTC) remains unknown. Immunohistochemistry was performed to examine HA expression in tissues from PTC patients. Two PTC cell lines were treated with HA synthesized inhibitor against HA production to assess its function. Serum HA levels from 107 PTC patients, 30 Hashimoto thyroiditis patients, and 45 normal controls (NC) were measured by chemiluminescence immunoassay. HA levels in fine needle aspiration (FNA) washouts obtained from thyroid nodules and lymph nodes (LNs) were measured by chemiluminescence immunoassay. Area under the curve (AUC) was computed to evaluate HA's clinical value. HA was highly expressed in PTC. Reducing HA production significantly inhibited PTC cell proliferation and invasion. Importantly, serum HA levels in PTC were significantly higher than those in NCs and Hashimoto thyroiditis and allowed distinguishing of thyroid cancers from NCs with high accuracy (AUC = 0.782). Moreover, elevated serum HA levels in PTC correlate with LN metastasis. HA levels in FNA washouts from PTC patients were significantly higher than those in benign controls, with a high AUC value (0.8644) for distinguishing PTC from benign controls. Furthermore, HA levels in FNA washouts from metastatic LN were significantly higher than those in nonmetastatic LN, with a high AUC value (0.8007) for distinguishing metastatic LNs from nonmetastatic LNs. HA levels in serum and FNA washout exhibited a potential significance for PTC diagnosis and an indicator for LN metastasis in patients with PTC.
Assuntos
Carcinoma Papilar , Ácido Hialurônico , Metástase Linfática , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Ácido Hialurônico/sangue , Ácido Hialurônico/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/diagnóstico , Adulto , Carcinoma Papilar/metabolismo , Carcinoma Papilar/diagnóstico , Linhagem Celular Tumoral , Carcinoma/metabolismo , Carcinoma/diagnóstico , Carcinoma/patologia , Linfonodos/patologia , Linfonodos/metabolismo , Doença de Hashimoto/metabolismo , Doença de Hashimoto/sangue , Doença de Hashimoto/patologia , Doença de Hashimoto/diagnóstico , Biópsia por Agulha Fina , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/sangue , Proliferação de CélulasRESUMO
The identification of single nucleotide polymorphisms (SNPs) is of paramount importance for disease diagnosis and clinical prognostication. In the context of nonsmall cell lung cancer (NSCLC), the emergence of resistance mutations, exemplified by the epidermal growth factor receptor (EGFR) T790 M and C797S, is intricately linked to the therapeutic efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Herein, a highly efficient and specific SNP detection platform for T790 M and C797S mutations has been engineered through the integration of an asymmetric polymerase chain reaction (PCR) and an ingeniously tailored four-way junction (4WJ) probe. Notably, a molecular beacon (MB) probe was judiciously designed to discern the allelic configuration of these mutations. The administration of first- and third-generation EGFR-TKIs demonstrates therapeutic efficacy solely when the mutations are in the trans configuration, characterized by a low fluorescence signal. In contrast, significant fluorescence by the MB probe is indicative of the C797S mutation being in a cis arrangement with T790M, thereby rendering the cells refractory to the therapeutic interventions of both first- and third-generation EGFR-TKIs. The assay is capable of concurrently detecting two point-mutations and ascertaining their allelic positions in a single test within 1.5 h, enhancing both efficiency and simplicity. It also exhibits high accuracy in the identification of clinical samples, offering promising implications for therapeutic guidelines. By enabling tailored treatment plans based on specific genetic profiles, our approach not only advances the precision of NSCLC treatment strategies but also marks a significant contribution to personalized medicine.
Assuntos
Alelos , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Polimorfismo de Nucleotídeo Único , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
NAD(P)H: quinone oxidoreductase-1 (NQO1) plays critical roles in antioxidation and abnormally overexpresses in tumors. Developing a fast and sensitive method of monitoring NQO1 will greatly promote cancer diagnosis in clinical practice. This study introduces a transformative colorimetric detection strategy for NQO1, harnessing an innovative competitive substrate mechanism between NQO1 and a new NADH oxidase (NOX) mimic, cobalt-nitrogen-doped carbon nanozyme (CoNC). This method ingeniously exploits the differential consumption of NADH in the presence of NQO1 to modulate the generation of H2O2 from CoNC catalysis, which is then quantified through a secondary, peroxidase-mimetic cascade reaction involving Prussian blue (PB) nanoparticles. This dual-stage reaction framework not only enhances the sensitivity of NQO1 detection, achieving a limit of detection as low as 0.67 µg mL-1, but also enables the differentiation between cancerous and noncancerous cells by their enzymatic activity profiles. Moreover, CoNC exhibits exceptional catalytic efficiency, with a specific activity reaching 5.2 U mg-1, significantly outperforming existing NOX mimics. Beyond mere detection, CoNC serves a dual role, acting as both a robust mimic of cytochrome c reductase (Cyt c) and a cornerstone for enzymatic regeneration, thereby broadening the scope of its biological applications. This study not only marks a significant step forward in the bioanalytical application of nanozymes but also sets the stage for their expanded use in clinical diagnostics and therapeutic monitoring.
Assuntos
Colorimetria , NAD(P)H Desidrogenase (Quinona) , NADH NADPH Oxirredutases , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/química , Humanos , NADH NADPH Oxirredutases/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Cobalto/química , Carbono/química , Biomimética , Limite de Detecção , Nitrogênio/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Ferrocianetos/química , NAD/metabolismo , NAD/químicaRESUMO
BACKGROUND: There are large differences in clinical manifestations and biological markers between elderly patients with rheumatoid arthritis (EPRA, age >60) and younger patients with RA (YPRA, age ≤60), partly owing to variations in the immune system of different age groups. Here, we focused on the changes of immune cell infiltration in YPRA and EPRA. METHODS: The R packages "ssGSEA" and "GSEA" were used to identify the changes in immune cell infiltration and immune-related pathways between the two groups. The R packages "WGCNA" and "DEseq2" were used to screen and verify age-related differentially expressed genes (DEGs). Hub genes were identified using Cytoscape and cytoHubba. Spearman correlation coefficient was conducted to evaluate correlations between hub age-related genes and immune cells. RESULTS: Compared with 54 established YPRA, several immune cells and immune-related pathways were markedly decreased in 29 EPRA synovial tissues. Moreover, 78 age-related DEGs related to amino acid and glycosphingolipid synthesis and metabolism were identified. USP2 and ARG2 were verified to be upregulated in EPRA, signifying that these two genes could effectively distinguish YPRA and EPRA and have potential as biomarkers. In addition, we found that USP2 was significantly negatively correlated with B cells and monocytes, while there was a significant negative association between ARG2 and T cells. CONCLUSIONS: In conclusion, this study is the first to systematically analyze changes in immune cell infiltration between YPRA and EPRA patients and obtain hub age-related genes, which may provide the basis for illuminating the pathogenesis of EPRA and informing treatment strategies.
Assuntos
Artrite Reumatoide , Idoso , Humanos , Aminoácidos , Artrite Reumatoide/genética , Linfócitos B , Biologia Computacional , Membrana Sinovial , Ubiquitina TiolesteraseRESUMO
Surface reconstruction plays a pivotal role in enhancing the activity of the oxygen evolution reaction (OER), particularly in terms of the structural transformation from metal oxides to (oxy)hydroxides. Herein, a novel (oxy)hydroxide (FeCoNiCuMoOOH) with high entropy is developed by the electrochemical reconstitution of corresponding oxide (FeCoNiCuMoOx). Significantly, the FeCoNiCuMoOOH exhibits much higher OER electrocatalytic activity and durability with an overpotential as low as 201 mV at a current density of 10 mA cm-2, and with a Tafel slope of 39.4 mV dec-1. The FeCoNiCuMoOOH/NF presents high stability when testing under a constant current at 100 mA cm-2 within 1000 h. The surface reconstruction is a process of dissolution-reprecipitation of Cu and Mo species and co-hydroxylation of five metal species, which ultimately leads to the formation of FeCoNiCuMoOOH from FeCoNiCuMoOx. This study holds great significance in the realm of designing high-entropy (oxy)hydroxides catalysts with exceptional activity and stability for OER.
RESUMO
Glucose transporter protein-1 (Glut1), is highly expressed in many cancer types and plays a crucial role in cancer progression through enhanced glucose transport. Its overexpression is associated with aggressive tumor behavior and poor prognosis. Herein, the nucleic acids modified gold nanoparticles (AuNPs) was synthesized to deliver small interfering RNA (siRNA) against Glut1 by microRNA 21 (miR-21) triggers toehold-mediated strand displacement reaction for lung cancer starvation therapy. Overexpression of miR-21 triggers toehold-mediated strand displacement, releasing the siRNA to knockdown of Glut1 in cancer cell instead of normal cell. Furthermore, the glucose oxidase-like activity of the AuNPs accelerates intracellular glucose consumption, promoting cancer cell starvation. The engineered AuNPs@anti-miR-21/siGlut1 complex inhibits cancer cell proliferation, xenograft tumor growth and promotes apoptosis through glucose starvation and ROS cascade signaling, underscoring its potential as an effective therapeutic strategy for lung cancer.
Assuntos
Proliferação de Células , Transportador de Glucose Tipo 1 , Glucose , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , MicroRNAs , RNA Interferente Pequeno , Ouro/química , Humanos , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Glucose/metabolismo , Nanopartículas Metálicas/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/química , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Camundongos Nus , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB CRESUMO
BACKGROUND: Immunotherapy brings new hope to patients with advanced gastric cancer. However, liver metastases can reduce the efficacy of immunotherapy in patients. Tumor-associated macrophages (TAMs) may be the cause of this reduction in efficacy. SPP1 + TAMs are considered to have immunosuppressive properties. We aimed to investigate the involvement of SPP1 + TAMs in the metastasis of gastric cancer. METHODS: The single-cell transcriptome was combined with batched BULK datasets for analysis. Animal models were used to verify the analysis results. RESULTS: We reveal the interaction of SPP1 + TAMs with CD8 + exhausted T cells in metastatic cancer. Among these interactions, GDF15-TGFBR2 may play a key immunosuppressive role. We constructed an LR score to quantify interactions based on ligands and receptors. The LR score is highly correlated with various immune features and clinical molecular subtypes. The LR score may also guide the prediction of the efficacy of immunotherapy and prognosis. CONCLUSIONS: The crosstalk between SPP1 + TAMs and CD8 + exhausted T cells plays a key immunosuppressive role in the gastric metastatic cancer microenvironment.
Assuntos
Neoplasias Hepáticas , Neoplasias Gástricas , Animais , Humanos , Macrófagos Associados a Tumor , Linfócitos T CD8-Positivos , Imunossupressores , Microambiente Tumoral , OsteopontinaRESUMO
OBJECTIVE: Leukocyte Ig-like receptor A3 (LILRA3) is a soluble receptor belongs to the immunoglobulin superfamily. Our previous studies demonstrated that LILRA3 is a common genetic risk for multiple autoimmune diseases, including RA. Functional LILRA3 conferred increased risk of joint destruction in patients with early RA. We undertook this study to further investigate the pathological role of LILRA3 in joint inflammation of RA. METHODS: Soluble LILRA3 was measured by ELISA. LILRA3 plasmids were transfected into human fibroblast-like synoviocytes (FLSs) using electroporation. Activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was determined by western blots. Cytokine transcripts were quantified by real-time PCR. Migratory and invasive capacities of FLSs were evaluated using transwell migration and Matrigel invasion assays. FLS apoptosis was analysed using flow cytometry. Colocalization of LILRA3, LILRB1 and HLA-G in RA-FLSs was visualized by immunofluorescence staining. RESULTS: Soluble LILRA3 was specifically expressed in synovial fluid and serum LILRA3 was significantly increased and positively correlated with disease activity/severity in RA patients. LILRA3 induced an increased expression of IL-6, IL-8 and MMP3 in RA-FLSs. In vitro LILRA3 stimulation or overexpression promoted RA-FLS migration and invasion, and enhanced phosphorylation of ERK/JNK. Inhibition of ERK/JNK resulted in suppression of IL-6/IL-8 expression in LILRA3-stimulated RA-FLSs. LILRA3 was co-localized with its homologue LILRB1 and shared ligand HLA-G in RA-FLSs. CONCLUSION: The present study provides the first evidence that soluble LILRA3 is a novel proinflammatory mediator involved in synovial inflammation by promoting RA-FLS activation, migration and invasion, probably through the ERK/JNK signalling pathways.
Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Antígenos HLA-G , Humanos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Interleucina-6 , Interleucina-8 , Inflamação , Receptores ImunológicosRESUMO
OBJECTIVES: The routine biomarkers for rheumatoid arthritis (RA), including anticyclic citrullinated peptide antibody (anti-CCP), rheumatoid factor (RF), immunoglobulin M (IgM), erythrocyte sedimentation rate (ESR), and C-reaction protein (CRP) have limited sensitivity and specificity. Scavenger receptor-A (SR-A) is a novel RA biomarker identified by our group recently, especially for seronegative RA. Here, we performed a large-scale multicentre study to further assess the diagnostic value of SR-A in combination with other biomarkers for RA. METHODS: The performance of SR-A in combination with other biomarkers for RA diagnosis was first revealed by a pilot study, and was further elucidated by a large-scale multicentre study. A total of 1129 individuals from 3 cohorts were recruited in the study, including RA patients, healthy controls, and patients with other common rheumatic diseases. Diagnostic properties were evaluated by the covariate-adjusted receiver-operating characteristic (AROC) curve, sensitivity, specificity and clinical association, respectively. RESULTS: Large-scale multicentre analysis showed that SR-A and anti-CCP dual combination was the optimal method for RA diagnosis, increasing the sensitivity of anti-CCP by 13% (87% vs 74%) while maintaining a specificity of 90%. In early RA patients, SR-A and anti-CCP dual combination also showed promising diagnostic value, increasing the sensitivity of anti-CCP by 7% (79% vs 72%) while maintaining a specificity of 94%. Moreover, SR-A and anti-CCP dual combination was correlated with ESR, IgM, and autoantibodies of RA patients, further revealing its clinical significance. CONCLUSION: SR-A and anti-CCP dual combination could potentially improve early diagnosis of RA, thus improving the prognosis and reducing mortality.
RESUMO
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
RESUMO
OBJECTIVE: To determine the high-efficiency ancillary features (AFs) screened from LR-3/4 lesions and the HCC/non-HCC group and the diagnostic performance of LR3/4 observations. MATERIALS AND METHODS: We retrospectively analyzed a total of 460 patients (with 473 nodules) classified into LR-3-LR-5 categories, including 311 cases of hepatocellular carcinoma (HCC), 6 cases of non-HCC malignant tumors, and 156 cases of benign lesions. Two faculty abdominal radiologists with experience in hepatic imaging reviewed and recorded the major features (MFs) and AFs of the Liver Imaging Reporting and Data System (LI-RADS). The frequency of the features and diagnostic performance were calculated with a logistic regression model. After applying the above AFs to LR-3/LR-4 observations, the sensitivity and specificity for HCC were compared. RESULTS: The average age of all patients was 54.24 ± 11.32 years, and the biochemical indicators ALT (P = 0.044), TBIL (P = 0.000), PLT (P = 0.004), AFP (P = 0.000) and ChildâPugh class were significantly higher in the HCC group. MFs, mild-moderate T2 hyperintensity, restricted diffusion and AFs favoring HCC in addition to nodule-in-nodule appearance were common in the HCC group and LR-5 category. AFs screened from the HCC/non-HCC group (AF-HCC) were mild-moderate T2 hyperintensity, restricted diffusion, TP hypointensity, marked T2 hyperintensity and HBP isointensity (P = 0.005, < 0.001, = 0. 032, p < 0.001, = 0.013), and the AFs screened from LR-3/4 lesions (AF-LR) were restricted diffusion, mosaic architecture, fat in mass, marked T2 hyperintensity and HBP isointensity (P < 0.001, = 0.020, = 0.036, < 0.001, = 0.016), which were not exactly the same. After applying AF-HCC and AF-LR to LR-3 and LR-4 observations in HCC group and Non-HCC group, After the above grades changed, the diagnostic sensitivity for HCC were 84.96% using AF-HCC and 85.71% using AF-LR, the specificity were 89.26% using AF-HCC and 90.60% using AF-LR, which made a significant difference (P = 0.000). And the kappa value for the two methods of AF-HCC and AF-LR were 0.695, reaching a substantial agreement. CONCLUSION: When adjusting for LR-3/LR-4 lesions, the screened AFs with high diagnostic ability can be used to optimize LI-RADS v2018; among them, AF-LR is recommended for better diagnostic capabilities.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Meios de ContrasteRESUMO
United Nations Sustainable Development Goal 6 tackles the long-neglected economic dimension of water utilization by monitoring nations' water use efficiency (WUE). However, it is imperative to emphasize the need for consistent spatial-temporal subnational WUE estimates, rather than relying solely on recent national trends, which can obscure crucial water use concerns and improvement opportunities. Here, a time series analysis of national, state, and sectoral (e.g., industrial, service, and agriculture) WUE from 1980 to 2015 was developed by compiling the most comprehensive and disaggregated water and economic data from 3243 US counties and 50 US states. The US total WUE increased by 181% from 16.2 (1985) to 45.6 USD/m3 (2015), driven by service sector WUE enhancements. The increased industry and service WUEs in most states were more strongly correlated with decreased per capita water withdrawal than with economic growth. Simultaneously, reductions in agriculture WUE were observed in 18 states potentially because of the complicated interaction of diverse factors specific to local communities. Expanding WUE gaps between affluent and less affluent states, and persisting WUE gaps between water-abundant andwater-scarce states highlight the need to advance policies to support under-resourced communities in effective water planning and water pricing for advancing equitable development.
Assuntos
Abastecimento de Água , Estados Unidos , Agricultura/economia , Água , Desenvolvimento SustentávelRESUMO
Biosecurity encompasses the health and safety of humans, animals, plants, and the environment. In this article, "biosecurity" is defined as encompassing the comprehensive aspects of human, animal, plant, and environmental safety. Reliable biosecurity testing technology is the key point for effectively assessing biosecurity risks and ensuring biosecurity. Therefore, it is crucial to develop excellent detection technologies to detect risk factors that can affect biosecurity. An electrochemical microfluidic biosensing platform integrates fluid control, target recognition, signal transduction, and output and incorporates the advantages of electrochemical analysis technology and microfluidic technology. Thus, an electrochemical microfluidic biosensing platform, characterized by exceptional analytical sensitivity, portability, rapid analysis speed, low reagent consumption, and low risk of contamination, shows considerable promise for biosecurity detection compared to traditional, more complex, and time-consuming detection technologies. This review provides a concise introduction to electrochemical microfluidic biosensors and biosecurity. It highlights recent research advances in utilizing electrochemical microfluidic biosensing platforms to assess biosecurity risk factors. It includes the use of electrochemical microfluidic biosensors for the detection of risk factors directly endangering biosecurity (direct application: namely, risk factors directly endangering the health of human, animals, and plants) and for the detection of risk factors indirectly endangering biosecurity (indirect application: namely, risk factors endangering the safety of food and the environment). Finally, we outline the current challenges and future perspectives of electrochemical microfluidic biosensing platforms.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Analíticas Microfluídicas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Animais , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodosRESUMO
Previous research has indicated the highly expressed lysine-specific histone demethylase 1A (KDM1A) in several human malignancies, including triple-negative breast cancer (TNBC). However, its detailed mechanisms in TNBC development remain poorly understood. The mRNA levels of KDM1A and Yin Yang 1 (YY1) were determined by RT-qPCR analysis. Western blot was performed to measure KDM1A and ubiquitin-specific protease 1 (USP1) protein expression. Cell proliferation, apoptosis, invasion, migration and stemness were evaluated by MTT assay, EdU assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere-formation assay, respectively. ChIP and dual-luciferase reporter assays were conducted to determine the relationship between YY1 and KDM1A. Xenograft tumor experiment and IHC were carried out to investigate the roles of USP1 and KDM1A in TNBC development in vivo. The highly expressed KDM1A was demonstrated in TNBC tissues and cells, and KDM1A knockdown significantly promoted cell apoptosis, and hampered cell proliferation, invasion, migration, and stemness in TNBC cells. USP1 could increase the stability of KDM1A via deubiquitination, and USP1 depletion restrained the progression of TNBC cells through decreasing KDM1A expression. Moreover, YY1 transcriptionally activated KDM1A expression by directly binding to its promoter in TNBC cells. Additionally, USP1 inhibition reduced KDM1A expression to suppress tumor growth in TNBC mice in vivo. In conclusion, YY1 upregulation increased KDM1A expression via transcriptional activation. USP1 stabilized KDM1A through deubiquitination to promote TNBC progression.
Assuntos
Histona Desmetilases , Neoplasias de Mama Triplo Negativas , Proteases Específicas de Ubiquitina , Ubiquitinação , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Camundongos , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Progressão da Doença , Proliferação de Células , Camundongos Nus , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Apoptose , Movimento CelularRESUMO
Focused ultrasound ablation surgery (FUAS) is a minimally invasive treatment option that has been utilized in various tumors. However, its clinical advancement has been hindered by issues such as low safety and efficiency, single image guidance mode, and postoperative tumor residue. To address these limitations, this study aimed to develop a novel multi-functional gas-producing engineering bacteria biological targeting cooperative system. Pulse-focused ultrasound (PFUS) could adjust the ratio of thermal effect to non-thermal effect by adjusting the duty cycle, and improve the safety and effectiveness of treatment.The genetic modification of Escherichia coli (E.coli) involved the insertion of an acoustic reporter gene to encode gas vesicles (GVs), resulting in gas-producing E.coli (GVs-E.coli) capable of targeting tumor anoxia. GVs-E.coli colonized and proliferated within the tumor while the GVs facilitated ultrasound imaging and cooperative PFUS. Additionally, multifunctional cationic polyethyleneimine (PEI)-poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEI-PLGA/EPI/PFH@Fe3O4) containing superparamagnetic iron oxide (SPIO, Fe3O4), perfluorohexane (PFH), and epirubicin (EPI) were developed. These nanoparticles offered synergistic PFUS, supplementary chemotherapy, and multimodal imaging capabilities.GVs-E.coli effectively directed the PEI-PLGA/EPI/PFH@Fe3O4 to accumulate within the tumor target area by means of electrostatic adsorption, resulting in a synergistic therapeutic impact on tumor eradication.In conclusion, GVs-E.coli-mediated multi-functional nanoparticles can synergize with PFUS and chemotherapy to effectively treat tumors, overcoming the limitations of current FUAS therapy and improving safety and efficacy. This approach presents a promising new strategy for tumor therapy.
Assuntos
Escherichia coli , Imagem Multimodal , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Escherichia coli/efeitos dos fármacos , Camundongos , Imagem Multimodal/métodos , Linhagem Celular Tumoral , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fluorocarbonos/química , Polietilenoimina/química , Humanos , Engenharia Genética/métodos , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas/métodos , Feminino , Nanopartículas/química , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Epirubicina/química , Ácido Poliglicólico/química , Ácido Láctico/química , Ablação por Ultrassom Focalizado de Alta Intensidade/métodosRESUMO
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
RESUMO
BACKGROUND: Nutritional deficiencies remain serious medical and public health issues worldwide, especially in children. This study aims to analyze cross-country inequality in four common nutritional deficiencies (protein-energy malnutrition, dietary iron deficiency, vitamin A deficiency and iodine deficiency) among children from 1990 to 2019 based on Global Burden of Disease (GBD) 2019 data. METHODS: Prevalence and disability-adjusted life years (DALYs) data as measures of four nutritional deficiency burdens in people aged 0 to 14 years were extracted from the GBD Results Tool. We analyzed temporal trends in prevalence by calculating the average annual percent change (AAPC) and quantified cross-country inequalities in disease burden using the slope index. RESULTS: Globally, the age-standardized prevalence rates of dietary iron deficiency, vitamin A deficiency and iodine deficiency decreased, with AAPCs of -0.14 (-0.15 to -0.12), -2.77 (-2.96 to -2.58), and -2.17 (-2.3 to -2.03) from 1999 to 2019, respectively. Significant reductions in socio-demographic index (SDI)-related inequality occurred in protein-energy malnutrition and vitamin A deficiency, while the health inequality for dietary iron deficiency and iodine deficiency remained basically unchanged. The age-standardized prevalence and DALY rates of the four nutritional deficiencies decreased as the SDI and healthcare access and quality index increased. CONCLUSIONS: The global burden of nutritional deficiency has decreased since 1990, but cross-country health inequalities still exist. More efficient public health measures are needed to reduce disease burdens, particularly in low-SDI countries/territories.
Assuntos
Iodo , Deficiências de Ferro , Desnutrição , Desnutrição Proteico-Calórica , Deficiência de Vitamina A , Criança , Humanos , Carga Global da Doença , Anos de Vida Ajustados por Qualidade de Vida , Disparidades nos Níveis de Saúde , Ferro da Dieta , Desigualdades de Saúde , Saúde GlobalRESUMO
This study aimed to develop and validate a cuproptosis-related gene signature for the prognosis of gastric cancer. The data in TCGA GC TPM format from UCSC were extracted for analysis, and GC samples were randomly divided into training and validation groups. Pearson correlation analysis was used to obtain cuproptosis-related genes co-expressed with 19 Cuproptosis genes. Univariate Cox and Lasso regression analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox regression analysis was used to construct the final prognostic risk model. The risk score curve, Kaplan-Meier survival curves, and ROC curve were used to evaluate the predictive ability of Cox risk model. Finally, the functional annotation of the risk model was obtained through enrichment analysis. Then, a six-gene signature was identified in the training cohort and verified among all cohorts using Cox regression analyses and Kaplan-Meier plots, demonstrating its independent prognostic significance for gastric cancer. In addition, ROC analysis confirmed the significant predictive potential of this signature for the prognosis of gastric cancer. Functional enrichment analysis was mainly related to cell-matrix function. Therefore, a new cuproptosis-related six-gene signature (ACLY, FGD6, SERPINE1, SPATA13, RANGAP1, and ADGRE5) was constructed for the prognosis of gastric cancer, allowing for tailored prediction of outcome and the formulation of novel therapeutics for gastric cancer patients.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Estimativa de Kaplan-Meier , Curva ROC , Fatores de Risco , ApoptoseRESUMO
BACKGROUND: Achieving clinically significant weight loss through lifestyle interventions for obesity management is challenging for most individuals. Improving intervention effectiveness involves early identification of intervention nonresponders and providing them with timely, tailored interventions. Early and frequent self-monitoring (SM) adherence predicts later weight loss success, making it a potential indicator for identifying nonresponders in the initial phase. OBJECTIVE: This study aims to identify clinically meaningful participant subgroups based on longitudinal adherence to SM of diet, activity, and weight over 6 months as well as psychological predictors of participant subgroups from a self-determination theory (SDT) perspective. METHODS: This was a secondary data analysis of a 6-month digital lifestyle intervention for adults with overweight or obesity. The participants were instructed to perform daily SM on 3 targets: diet, activity, and weight. Data from 50 participants (mean age: 53.0, SD 12.6 y) were analyzed. Group-based multitrajectory modeling was performed to identify subgroups with distinct trajectories of SM adherence across the 3 SM targets. Differences between subgroups were examined for changes in clinical outcomes (ie, body weight, hemoglobin A1c) and SDT constructs (ie, eating-related autonomous motivation and perceived competence for diet) over 6 months using linear mixed models. RESULTS: Two distinct SM trajectory subgroups emerged: the Lower SM group (21/50, 42%), characterized by all-around low and rapidly declining SM, and the Higher SM group (29/50, 58%), characterized by moderate and declining diet and weight SM with high activity SM. Since week 2, participants in the Lower SM group exhibited significantly lower levels of diet (P=.003), activity (P=.002), and weight SM (P=.02) compared with the Higher SM group. In terms of clinical outcomes, the Higher SM group achieved a significant reduction in body weight (estimate: -6.06, SD 0.87 kg; P<.001) and hemoglobin A1c (estimate: -0.38, SD 0.11%; P=.02), whereas the Lower SM group exhibited no improvements. For SDT constructs, both groups maintained high levels of autonomous motivation for over 6 months. However, the Lower SM group experienced a significant decline in perceived competence (P=.005) compared with the Higher SM group, which maintained a high level of perceived competence throughout the intervention (P=.09). CONCLUSIONS: The presence of the Lower SM group highlights the value of using longitudinal SM adherence trajectories as an intervention response indicator. Future adaptive trials should identify nonresponders within the initial 2 weeks based on their SM adherence and integrate intervention strategies to enhance perceived competence in diet to benefit nonresponders. TRIAL REGISTRATION: ClinicalTrials.gov NCT05071287; https://clinicaltrials.gov/study/NCT05071287. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1016/j.cct.2022.106845.