Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Environ Res ; 250: 118506, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387496

RESUMO

Polystyrene nanoplastics (PS-NPs), a group of ubiquitous pollutants, may injure the central nervous system through the blood‒brain barrier (BBB). However, whether exposure to PS-NPs contributes to BBB disruption and the underlying mechanisms are still unclear. In vivo, we found that PS-NPs (25 mg/kg BW) could significantly increase BBB permeability in mice and downregulate the distribution of the tight junction-associated protein zona occludens 1 (ZO-1) in brain microvascular endothelial cells (BMECs). Using an in vitro BBB model, exposure to PS-NPs significantly reduced the transendothelial electrical resistance and altered ZO-1 expression and distribution in a dose-dependent manner. RNA-seq analysis and functional investigations were used to investigate the molecular pathways involved in the response to PS-NPs. The results revealed that the ferroptosis and glutathione metabolism signaling pathways were related to the disruption of the BBB model caused by the PS-NPs. PS-NPs treatment promoted ferroptosis in bEnd.3 cells by inducing disordered glutathione metabolism in addition to Fe2+ and lipid peroxide accumulation, while suppressing ferroptosis with ferrostatin-1 (Fer-1) suppressed ferroptosis-related changes in bEnd.3 cells subjected to PS-NPs. Importantly, Fer-1 alleviated the decrease in ZO-1 expression in bEnd.3 cells and the exacerbation of BBB damage induced by PS-NPs. Collectively, our findings suggest that inhibiting ferroptosis in BMECs may serve as a potential therapeutic target against BBB disruption induced by PS-NPs exposure.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Ferroptose , Poliestirenos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Ferroptose/efeitos dos fármacos , Poliestirenos/toxicidade , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Nanopartículas/toxicidade , Masculino
2.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Sinvastatina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
3.
Ecotoxicol Environ Saf ; 270: 115889, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150751

RESUMO

Silica nanoparticles (SiNPs) have been widely used in electronics, chemistry, and biomedicine. Human exposure to SiNPs and possible health effects have attracted much attention. The potential cardiovascular toxicity of SiNPs and their related mechanisms are still unclear. Therefore, in this study, we investigated the toxic effects of SiNPs on human umbilical vein endothelial cells (HUVECs). We found that SiNPs could induce HUVECs ferroptosis. The results showed that the level of intracellular divalent iron and lipid peroxidation increased, and mitochondrial cristae decreased. In addition, the pretreatment of the iron chelator deferoxamine mesylate (DFO) could alleviate the ferroptosis of cells. Interestingly, pretreatment of 3-methyladenine (3-MA), an autophagy/PI3K inhibitor could partially inhibit autophagy and reduce ferroptosis, which indicated that autophagy played an important role in cell ferroptosis. Additionally, after knocking down nuclear receptor coactivator 4 (NCOA4), Ferritin Heavy Chain 1 (FTH1) expression was up-regulated, and the levels of divalent iron and lipid peroxidation decreased, which suggested that NCOA4 mediated the ferroptosis of HUVECs induced by SiNPs. In conclusion, this study shows that SiNPs can induce cardiovascular toxicity in which there is ferroptosis. NCOA4-mediated ferritinophagy and resultant ferroptosis by SiNPs may play an important role. This study provides a new theoretical strategy for the treatment and prevention of cardiovascular diseases in the future.


Assuntos
Ferroptose , Nanopartículas , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dióxido de Silício/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Nanopartículas/toxicidade , Autofagia , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
4.
BMC Pulm Med ; 22(1): 13, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34991559

RESUMO

BACKGROUND: Silicosis is a systemic disease characterized by persistent inflammation and incurable pulmonary fibrosis. Although great effort has been made to understand the pathogenesis of the disease, molecular mechanism underlying silicosis is not fully elucidated. This study was aimed to explore proteomic and transcriptomic changes in rat model of silicosis. METHODS: Twenty male Wistar rats were randomly divided into two groups with 10 rats in each group. Rats in the model group were intratracheally instilled with 50 mg/mL silicon dioxide (1 mL per rat) and rats in the control group were treated with 1.0 mL saline (1 mL per rat). Twenty-eight days later, transcriptomic analysis by microarray and tandem mass tags (TMT)-based proteomic analysis were performed to reveal the expression of mRNAs and proteins in lung tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyze the altered genes and proteins. The integrated analysis was performed between transcriptome and proteome. The data were further verified by RT-qPCR and parallel reaction monitoring (PRM). RESULTS: In total, 1769 differentially expressed genes (DEGs) and 650 differentially expressed proteins (DEPs) were identified between the silicosis model and control groups. The integrated analysis showed 250 DEPs were correlated to the corresponding DEGs (cor-DEPs-DEGs), which were mainly enriched in phagosome, leukocyte transendothelial migration, complement and coagulation cascades and cellular adhesion molecule (CAM). These pathways are interrelated and converged at common points to produce an effect. GM2a, CHI3L1, LCN2 and GNAI1 are involved in the extracellular matrix (ECM) and inflammation contributing to fibrosis. CONCLUSION: Our comprehensive transcriptome and proteome data provide new insights into the mechanisms of silicosis and helpful information for more targeted prevention and treatment of silicosis.


Assuntos
Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Dióxido de Silício/efeitos adversos , Silicose/genética , Animais , China , Expressão Gênica , Masculino , Proteômica , Fibrose Pulmonar/patologia , RNA Mensageiro , Ratos , Ratos Wistar , Silicose/patologia , Transcriptoma
5.
Environ Toxicol ; 37(3): 385-400, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34766707

RESUMO

The mechanism of the sterile inflammatory response in the respiratory tract induced by exposure to sterile particles has not been fully elucidated. The aim of our study is to explore the earlier events in initiating inflammatory response at molecular and cellular level in primary cultured human airway epithelial cells (AEC) exposed to silica particles in order to provide information for earlier diagnosis and prevention of silica particle-induced toxicity as well as possible information on the genesis of silicosis. We isolated primary AEC from three healthy adults and treated them with silica particles at different concentrations for 48 h. We found evidence for silica-induced inflammasome activation by the co-localization of Caspase-1 and NLRP3, as well as increased levels of IL-1ß and IL-18. Lactate dehydrogenase and NucGreen analysis proved the occurrence of pyroptosis. High throughput mRNA sequencing showed that the inflammatory response and NF-κB signaling pathways were significantly enriched in gene ontology and Kyoto encyclopedia of genes and genomes analysis, and pyroptosis-related genes were up-regulated. The miR-455-3p and five lncRNAs (LOC105375913, NEAT1, LOC105375181, LOC100506098, and LOC105369370) were verified as key factors related to the mechanism by ceRNA network analysis. LOC105375913 was first discovered to be associated with inflammation in AEC. These data suggest that microcrystalline silica can induce significant inflammation and pyroptosis in human primary AEC through NLRP3 inflammasome pathway and NF-κB signaling pathway at both the gene and protein levels, and the possible mechanism could be miR-455-3p mediated ceRNA hypothesis. Our data provide a method for the studies of the respiratory toxicity of fine particulate matter and the pathogenesis of early silicosis. The miR-455-3p and five lncRNAs related ceRNA network might be the toxicity mechanism of microcrystalline silica particles to AEC.


Assuntos
MicroRNAs , Piroptose , Células Epiteliais , Humanos , Inflamassomos/genética , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Sistema Respiratório , Dióxido de Silício/toxicidade
6.
Environ Toxicol ; 37(8): 1891-1901, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35396826

RESUMO

Methylmercury (MeHg) is an environmental neurotoxic substance, which can easily cross the blood-brain barrier, causing irreversible damage to the human central nervous system. Reactive oxygen species (ROS) are involved in various ways of intracellular physiological or pathological processes including neuronal apoptosis. This study attempted to explore the role of ROS-mediated poly ADP-ribose polymerase (PARP)/apoptosis-inducing factor (AIF) apoptosis signaling pathway in the process of MeHg-induced cell death of human neuroblastoma cells (SH-SY5Y). Here, we found that SH-SY5Y cells underwent apoptosis in response to MeHg, which was accompanied by the increased levels of ROS and calcium ion, and the activation of caspase cascades and PARP. Inhibiting the production of ROS can reduce the apoptosis rate to a certain extent. PARP/AIF apoptotic pathway is independent of caspase dependent signaling pathway and regulates it. In conclusion, these results suggest that ROS mediated activation of caspase pathway and PARP/AIF signaling pathway are involved in MeHg induced apoptosis, and these two pathways interact with each other.


Assuntos
Compostos de Metilmercúrio , Neuroblastoma , Adenosina Difosfato Ribose/farmacologia , Apoptose , Fator de Indução de Apoptose/metabolismo , Fator de Indução de Apoptose/farmacologia , Caspases/metabolismo , Humanos , Compostos de Metilmercúrio/toxicidade , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Environ Toxicol ; 36(7): 1412-1421, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33749115

RESUMO

Environmental exposure to lead (Pb) can damage to the central nervous system (CNS) in humans. High-fat diet (HFD) also has been suggested to impair neurocognitive function. Blood-brain barrier (BBB) is a rigorous permeability barrier for maintaining homeostasis of CNS. The damage of BBB caused by tight junctions (TJs) disruption is central to the etiology of various CNS disorders. This study aimed to investigate whether HFD could exacerbate Pb exposure induced the destruction of BBB integrity by TJs disruption. To this end, we measured cell viability assay, trans-endothelial electrical resistance assay, horseradish peroxidase flux measurement, Western blot analysis, and immunofluorescence experiments. The results showed that palmitic acid (PA), the most common saturated fatty acid found in the human body, can increase the permeability of the BBB in vitro which formed in bEnd.3 cells induced by Pb exposure, and decrease the expression of TJs, such as zonula occludins-1 (ZO-1) and occludin. Besides, we found that PA could promote the up-regulation of matrix metalloproteinase (MMP)-9 expression and activate the c-Jun N-terminal kinase (JNK) pathway induced by Pb. MMP-9 inhibitor or JNK inhibitor could increase BBB integrity and up-regulate the expressions of ZO-1 and occludin after treatment, respectively. Moreover, the JNK inhibitor could down-regulate the expression of MMP-9. In conclusion, these results suggested that HFD exacerbates Pb-induced BBB disruption by disrupting TJs integrity. This may be because PA promotes the activation of JNK pathway and then up-regulated the expression of MMP-9 after Pb-exposure. It is suggested that people with HFD exposed to environmental Pb may cause more serious damage to the CNS.


Assuntos
Barreira Hematoencefálica , Junções Íntimas , Barreira Hematoencefálica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Chumbo/toxicidade , Ocludina/metabolismo , Junções Íntimas/metabolismo
8.
Environ Toxicol ; 36(7): 1389-1401, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33764603

RESUMO

Silica nanoparticles (SiNPs) as one of the most productive nano-powder, has been extensively applied in various fields. There has been increasing concern about the adverse effects of SiNPs on the health of ecological organisms and human. The potential cardiovascular toxicity of SiNPs and involved mechanisms remain elusive. Hence, in this study, we investigated the cardiovascular toxicity of SiNPs (60 nm) and explored the underlying mechanisms using H9c2 cardiomyocytes. Results showed that SiNPs induced oxidative stress and activated the Nrf2/HO-1 antioxidant pathway. Autophagy was also activated by SiNPs. Interestingly, N-acetyl-L-cysteine (NAC)attenuated autophagy after inhibiting reactive oxygen species (ROS). Meanwhile, down-regulation of Nrf2 enhanced autophagy. In summary, these data indicated that SiNPs induce autophagy in H9c2 cardiomyocytes through oxidative stress, and the Nrf2/HO-1 pathway has a negative regulatory effect on autophagy. This study provides new evidence for the cardiovascular toxicity of SiNPs and provides a reference for the safe use of nanomaterials in the future.


Assuntos
Nanopartículas , Dióxido de Silício , Autofagia , Humanos , Fator 2 Relacionado a NF-E2/genética , Nanopartículas/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Dióxido de Silício/toxicidade
9.
Environ Toxicol ; 36(4): 675-685, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33270327

RESUMO

The application of silica nanoparticles (SiNPs) in areas of agriculture and medicine has raised great concerns for the potential adverse effects of SiNPs. The increasing toxicological studies focused mainly on the lung and cardiovascular system, but the adverse effects of SiNPs on nervous system have not been well explored. This study aimed to evaluate the role and mechanism of unfolded protein reaction (UPR) in SiNPs-induced cell injury on nerve cells in vitro. We investigated the UPR-mediated apoptosis caused by SiNPs in human neuroblastoma (SH-SY5Y) cell line. The size of SiNPs and its effect on cell ultrastructure were observed by transmission electron microscopy (TEM). Cell growth, mitochondrial membrane potential (MMP), calcium ion (Ca2+ ), apoptosis rate, and the expression level of related proteins were evaluated using MTT, flow cytometry, and western blot in SH-SY5Y cells exposed to SiNPs. The results showed that with the increase of SiNPs concentration, cell viability decreased, MMP decreased, active oxygen (ROS), and Ca2+ levels increased in a dose-dependent manner. In addition, protein expression of PERK, GRP78, and other related proteins in the unfolded protein response increased in a dose-response manner together with the expression of apoptosis proteins. Conclusively, this study confirmed that SiNPs can affect the neural system by interfering structure and functional and inducing apoptosis in nerve cells through unfolded protein response.


Assuntos
Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Nanopartículas/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química
10.
Toxicol Mech Methods ; 31(9): 655-666, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34225584

RESUMO

Pulmonary fibrosis induced by silica dust is an irreversible, chronic, and fibroproliferative lung disease with no effective treatment at present. BMSCs-derived exosomes (BMSCs-Exo) possess similar functions to their parent cells. In this study, we investigated the therapeutic potential and underlying molecular mechanism for BMSCs-Exo in the treatment of silica-induced pulmonary fibrosis. The rat model of experimental silicosis pulmonary fibrosis was induced with 1.0 mL of one-off infusing silica suspension using the non-exposed intratracheal instillation (50 mg/mL/rat). In vivo transplantation of BMSCs-Exo effectively alleviated silica-induced pulmonary fibrosis, including a reduction in collagen accumulation, inhibition of TGF-ß1, and decreased HYP content. Treatment of BMSCs-Exo increased the expression of epithelial marker proteins including E-cadherin (E-cad) and cytokeratin19 (CK19) and reduced the expression of fibrosis marker proteins including α-Smooth muscle actin (α-SMA) after exposure to silica suspension. Furthermore, we found that BMSCs-Exo inhibited the expression of Wnt/ß-catenin pathway components (P-GSK3ß, ß-catenin, Cyclin D1) in pulmonary fibrosis tissue. BMSCs-Exo is involved in the alleviation of silica-induced pulmonary fibrosis by reducing the level of profibrotic factor TGF-ß1 and inhibiting the progression of epithelial-mesenchymal transition (EMT). Additionally, attenuation of the Wnt/ß-catenin signaling pathway closely related to EMT may be one of the mechanisms involved in anti-fibrotic effects of exosomes.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Ratos , Dióxido de Silício/toxicidade , Fator de Crescimento Transformador beta1 , Via de Sinalização Wnt , beta Catenina/metabolismo
11.
Epidemiol Infect ; 148: e248, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004084

RESUMO

Haemorrhagic fever with renal syndrome (HFRS), a rodent-borne disease, is a major public health concern in both developed and developing countries. China is the most severe endemic country in the world, constituting 90% of the cases. Although the incidence of HFRS has substantively decreased in most areas of China, HFRS has rebounded remarkably in some epidemic areas. Xuancheng is one of these areas. In this study, we collected the case data reported recently in Xuancheng and designed a 1:3 case-control study. The Chi-square test, univariate and multivariate logistic regression analysis were performed. In all cases, farmers made up the highest proportion of occupations. And there were 20 variables with statistical significance including indoor hygienic conditions; the surrounding environment; whether bitten by rats at work and other criteria. In addition, exposure to rodents and rats bites is a high-risk factor for HFRS. Rodent density was calculated at 20.9% (159/760), the virus carrier rate was 9.4% (15/159) and the index of rats with a virus was about 2.0%. Exposure to rodents and insect bites is also high-risk factors for HFRS among local residents in Xuancheng. More importantly, during the flood years, the increased density of rodents led to an increased risk of human exposure to rodents. As our statistical analysis proves, targeted strategies should be developed and implemented to reduce the incidence of local diseases in the future.


Assuntos
Vírus Hantaan/isolamento & purificação , Febre Hemorrágica com Síndrome Renal/epidemiologia , Animais , China/epidemiologia , Reservatórios de Doenças , Febre Hemorrágica com Síndrome Renal/transmissão , Febre Hemorrágica com Síndrome Renal/virologia , Humanos , Camundongos , Ratos , Fatores de Risco , Fatores de Tempo
12.
BMC Public Health ; 20(1): 483, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293375

RESUMO

BACKGROUND: Echinococcosis is a neglected zoonotic parasitic disease caused echinococcus parasitizes, poseing a significant economic burden on both humans and animals. There are limited studies on echinococcosis in China, especially Xizang Autonomous Region, although the area is endemic area for echinococcosis. The study aimed to provide information for strategic prevention against this disease. METHODS: A cross-sectional survey was conducted among the residents in Xizang Autonomous Region, China to evaluate their knowledge, attitudes and practices on endemicity of echinococcosis. A face-to-face survey was conducted to collect the data using a well-designed questionnaire. The contents included basic personal information, knowledge, attitudes and practices about echinococcosis, personal hygiene and behavior habits, dog feeding and whether they had received the information on echinococcosis, and so on. We surveyed 840 persons in practice. All data analysis was performed using Epi Info 7.2. RESULTS: Of the total particpants, 86.8% had a primary education level or below (including primary and illiterate), and even 45.0% were illiterate. Farmers and herdsmen represent the main occupations in this study. People who know all the echinococcosis-related knowledge in the questionnaire only accounted for 8.7% of the participants. However, none of the participants was aware of routes of echinococcosis infection in human or dogs. The data showed participants with higher educational background had the high awareness rate of echinococcosis-related knowledge or attitudes (chi-square for trend, χ2 = 21.23, p<0.05 & χ2 = 48.43, p<0.05). In addition, The percentage of the participant with awareness of echinococcosis-related practices was associated with their age and principle occupation (χ2 = 52.72, p<0.05 & χ2 = 20.63, p<0.05). CONCLUSIONS: Xizang Autonomous Region is an epidemic area of Echinococcosis. The prevalence of the disease has been largely due to the lack of knowledge, awareness, and poor hygiene practice in local residences. Therefore, effective disease prevention education and awareness campaigns in community will be significantly helpful in prevention and control of echinococcosis.


Assuntos
Equinococose/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Zoonoses/prevenção & controle , Adolescente , Adulto , Idoso , Animais , Conscientização , China/epidemiologia , Estudos Transversais , Cães , Equinococose/epidemiologia , Equinococose/parasitologia , Fazendeiros , Feminino , Hábitos , Humanos , Higiene , Alfabetização , Masculino , Pessoa de Meia-Idade , Prevalência , Inquéritos e Questionários , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/parasitologia
13.
Environ Toxicol ; 35(11): 1260-1273, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32639093

RESUMO

Crotonaldehyde, a highly toxic α, ß-unsaturated aldehyde, is a ubiquitous hazardous pollutant. Because of its extreme toxicity and ubiquity in all types of smoke, most current research focuses on the lung toxicity of such air pollutants. However, the specific mechanism of pulmonary toxicity caused by crotonaldehyde remains unclear, especially after long-term exposure to crotonaldehyde at low dose. Therefore, the aim of the present study is to determine whether crotonaldehyde-induced oxidative damage and inflammation promote apoptosis in rats via the mitochondrial pathway using histopathology, immunohistochemistry, biochemistry analysis and Western blot analysis. The results show that crotonaldehyde elicited oxidative damage and inflammation in rats in a concentration-dependent manner. Crotonaldehyde-induced lung injury which was confirmed by H&E, Masson's trichrome staining and TUNEL. And crotonaldehyde-induced lung cell apoptosis showed a concentration-response relationship. Immunohistochemistry and Western blot results showed that apoptotic mitochondrial signaling pathway is abnormally activated in crotonaldehyde-induced lung injury. Collectively, this study demonstrates that exposure of rats to crotonaldehyde induces lung injury by inducing apoptosis, which is related to oxidative damage and inflammation through mitochondrial pathway.


Assuntos
Aldeídos/toxicidade , Poluentes Ambientais/toxicidade , Lesão Pulmonar/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
14.
Toxicol Mech Methods ; 30(9): 646-655, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32746757

RESUMO

The use of silica nanoparticles (SiNPs) is increasing in popularity; however, the emissions released during manufacturing, use and during the disposal stages potentially harm the environment. SiNPs can enter the body and cause cardiac toxicity indirectly or directly. However, toxicological data on SiNPs in cardiac cells in vitro, and the detailed molecular mechanisms by which damage is caused remain unclear. In the present study, oxidative stress-mediated apoptosis and cytotoxicity induced by SiNPs in H9c2 cells were examined. H9c2 cells were used to explore the mechanisms of toxicity by treating cells with 0, 25, 50, 100, and 200 µg/ml SiNPs, with and without 3 mM of the reactive oxygen species (ROS) scavenger, N-acetyl-l-cysteine (NAC), for 24 h. The results showed that SiNPs decreased cell viability and proliferation by increasing the release of lactate dehydrogenase (LDH) and inducing apoptosis in H9c2 cells. ROS levels were significantly increased in a dose-dependent manner. Additionally, the levels of superoxide dismutase (SOD), glutathione (GSH), and GSH-peroxidase (Px) were significantly decreased following exposure to SiNPs. Treatment with NAC attenuated LDH release; the levels of ROS, SOD, GSH, and GSH-Px production were increased, and SiNPs-induced mitochondrial pathway-dependent apoptosis was reduced. These results demonstrate that apoptosis and cytotoxicity induced by SiNPs in H9c2 cells are a result of ROS-mediated oxidative stress. These data suggest that exposure to SiNPs is a potential risk factor for cardiovascular disease.


Assuntos
Apoptose/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Dióxido de Silício/toxicidade , Animais , Cardiotoxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Cardiopatias/metabolismo , Cardiopatias/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Transdução de Sinais , Fatores de Tempo
15.
IUBMB Life ; 70(10): 961-968, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30207631

RESUMO

Orexin A is a multifaceted peptide produced in hypothalamus. We examined the effect of orexin A on vascular endothelial cells. Our study showed that orexin A had a profound inhibitory effect against endothelial inflammation by oxidized low-density lipoprotein (ox-LDL) in endothelial cells. Orexin A partially suppressed ox-LDL-induced monocytes THP-1 cells attachment to endothelial cells by limiting expression of vascular molecules including VCAM-1, ICAM-1, and E-selectin. Mechanistically, orexin A ameliorated endothelial dysfunction by reducing MAP kinase p38 and NF-κB activation via its receptor-OX1R. Orexin A suppressed phosphorylation of MAP kinase p38 and the NF-κB cascade kinases IKKα and IκBα, and prevented the shuttle of p65 protein into nuclear. Additionally, we reported that OX1R was expressed in HUVECs. Silence of OX1R completely abolished the inhibitory function of orexin in attachment of THP-1 cells. Collectively, our data suggest that orexin A ameliorated endothelial dysfunction under inflammatory stimuli. © 2018 IUBMB Life, 70(10):961-968, 2018.


Assuntos
Inflamação/genética , NF-kappa B/genética , Receptores de Orexina/genética , Orexinas/genética , Selectina E/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Lipoproteínas LDL/antagonistas & inibidores , Monócitos/metabolismo , Monócitos/patologia , Receptores de Orexina/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/genética , Molécula 1 de Adesão de Célula Vascular/genética , eIF-2 Quinase/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
16.
Med Sci Monit ; 24: 8639-8646, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30488879

RESUMO

BACKGROUND The composition of the intestinal microbiota and its effect on septic shock patients in the intensive care unit (ICU) is unknown. In the present study we explored the hypothesis that bacterial diversity is decreased in septic shock patients and that this diversity may be improved by use of probiotics or enteral nutrition. MATERIAL AND METHODS A total of 15 stool samples were collected prospectively from septic shock patients in the ICU, while 15 samples from healthy subjects served as controls. Bacterial DNA was submitted for 16S rDNA gene sequencing. The relationship between intestinal microbiota and prognosis was evaluated. RESULTS Significantly lower bacterial diversity was found in septic shock patients compared with healthy subjects (p<0.05). However, there was no difference in bacterial diversity in the presence or absence of probiotics (p=0.59), enteral nutrition (p=0.59), or in-hospital death (p=0.93) in septic shock patients. A high abundance of Proteobacteria and Fusobacteria was observed in most septic shock patients, whereas low abundance was observed in healthy subjects (mean relative proportion: 23.71% vs. 3.53%, p<0.05; 1.27% vs. 0.12%, p=0.59). CONCLUSIONS Bacterial diversity was decreased, and 1 or 2 rare bacterial species were overgrown in septic shock patients. Bacterial diversity was not improved by use of probiotics or enteral nutrition. The small sample size of our study limits the interpretation of results.


Assuntos
Microbioma Gastrointestinal/fisiologia , Choque Séptico/microbiologia , Adulto , Idoso , Bactérias/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Probióticos/uso terapêutico , Prognóstico , Choque Séptico/fisiopatologia
17.
Front Immunol ; 15: 1444958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211045

RESUMO

As a small molecule, hydrogen is colorless, odorless and lightest. Many studies conducted that hydrogen can protect almost every organ, including the brain, heart muscle, liver, small intestine, and lungs. To verify whether high concentrations of hydrogen (HCH) has anti-inflammatory and antioxidant activities on respiratory system, we product a systematic review and meta-analysis. We investigated MEDLINE-PubMed, Cochrane Library, ScienceDirect, Wiley and SpringerLink database and selected in vivo studies related to the anti-inflammatory or antioxidant effects of HCH in the lung diseases which were published until September 2023. We firstly identified 437 studies and only 12 met the inclusion criteria. They all conducted in rodents. The results showed that HCH had a positive effect on the reduction of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-4, IL-8, malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS); but there is no effect on IL-6, we speculated that may contribute to the test results for different body fluids and at different points in time. This meta-analysis discovered the protective effects on inflammation and oxidative stress, but whether there exists more effects on reduction of inflammatory and oxidant mediators needs to be further elucidated.


Assuntos
Anti-Inflamatórios , Antioxidantes , Hidrogênio , Pneumopatias , Estresse Oxidativo , Animais , Humanos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Citocinas/metabolismo , Hidrogênio/análise , Mediadores da Inflamação/metabolismo , Pneumopatias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
18.
iScience ; 27(6): 109948, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799583

RESUMO

This study aims to establish a scientific foundation for early detection and diagnosis of silicosis by conducting meta-analysis on the role of single biomarkers in independent diagnosis. The combined sensitivity (Sen), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic score, and diagnostic odds ratio (DOR) were 0.84 (95% confidence interval (CI): 0.77-0.90), 0.83 (95% CI: 0.78-0.88), 5.08 (95% CI: 3.92-6.59), 0.19 (95% CI: 0.13-0.27), 3.31 (95% CI: 2.88-3.74) and 27.29 (95% CI: 17.77-41.91), respectively. The area under the curve (AUC) was 0.90 (95% CI: 0.88-0.93). The Fagan plot shows a positive posterior probability of 82% and a negative posterior probability of 15%. This study establishes an academic basis for the swift identification, mitigation, and control of silicosis through scientific approaches. The assessed biomarkers offer precision and dependability in silicosis diagnosis, opening novel paths for early detection and intervention, thereby mitigating the disease burden associated with silicosis.

19.
Front Biosci (Landmark Ed) ; 29(8): 291, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39206899

RESUMO

Neurodegenerative disorders are typified by the progressive degeneration and subsequent apoptosis of neuronal cells. They encompass a spectrum of conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), epilepsy, brian ischemia, brian injury, and neurodegeneration with brain iron accumulation (NBIA). Despite the considerable heterogeneity in their clinical presentation, pathophysiological underpinning and disease trajectory, a universal feature of these disorders is the functional deterioration of the nervous system concomitant with neuronal apoptosis. Ferroptosis is an iron (Fe)-dependent form of programmed cell death that has been implicated in the pathogenesis of these conditions. It is intricately associated with intracellular Fe metabolism and lipid homeostasis. The accumulation of Fe is observed in a variety of neurodegenerative diseases and has been linked to their etiology and progression, although its precise role in these pathologies has yet to be elucidated. This review aims to elucidate the characteristics and regulatory mechanisms of ferroptosis, its association with neurodegenerative diseases, and recent advances in ferroptosis-targeted therapeutic strategies. Ferroptosis may therefore be a critical area for future research into neurodegenerative diseases.


Assuntos
Ferroptose , Ferro , Doenças Neurodegenerativas , Ferroptose/fisiologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Ferro/metabolismo , Animais , Neurônios/metabolismo , Neurônios/patologia
20.
Int Immunopharmacol ; 138: 112563, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38943976

RESUMO

Silicosis is a progressive disease characterized by interstitial fibrosis resulting from inhalation of silica particles, and currently lacks specific treatment. Hydrogen (H2) has demonstrated antioxidative, anti-inflammatory, and anti-fibrotic properties, yet its efficacy in treating silicosis remains unexplored. In this study, rats exposed to silica were administered interventions of H2 combined with tetrandrine, and euthanized at 14, 28, and 56 days post-intervention. Lung tissues and serum samples were collected for analysis. Histological examination, MDA assay, enzyme-linked immunosorbent assay, hydroxyproline assay, and Western blotting were employed to assess the impact of H2 combined with tetrandrine on pulmonary fibrosis. The results revealed that this combination significantly alleviated inflammation in silicosis-afflicted rats, effectively suppressed levels of MDA, TNF-α, and IL-1ß expression, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Notably, protein expression level of E-cadherin was increased,however protein expression levels of vimentin and α-SMA were reduced, and TGF-ß were reduced, alongside a significant decrease in hydroxyproline content. Furthermore, H2 combined with tetrandrine downregulated protein expression of NF-κB p65, NF-κB p-p65, Caspase-1, ASC, and NLRP3. These findings substantiate the hypothesis that H2 combined with tetrandrine mitigates inflammation associated with silicosis and suppresses the EMT process to ameliorate fibrosis via the NF-κB/NLRP3 signaling pathway. However, the pressure of airway opening was not assessed in this study and dynamic readings of lung physiological function were not obtained, which is a major limitation of this study.


Assuntos
Benzilisoquinolinas , Transição Epitelial-Mesenquimal , Hidrogênio , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fibrose Pulmonar , Transdução de Sinais , Dióxido de Silício , Silicose , Animais , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Benzilisoquinolinas/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Silicose/tratamento farmacológico , Silicose/metabolismo , Ratos , Hidrogênio/uso terapêutico , Hidrogênio/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA